Recherche avancée

Médias (2)

Mot : - Tags -/doc2img

Autres articles (33)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 est la première version de MediaSPIP stable.
    Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Mise à disposition des fichiers

    14 avril 2011, par

    Par défaut, lors de son initialisation, MediaSPIP ne permet pas aux visiteurs de télécharger les fichiers qu’ils soient originaux ou le résultat de leur transformation ou encodage. Il permet uniquement de les visualiser.
    Cependant, il est possible et facile d’autoriser les visiteurs à avoir accès à ces documents et ce sous différentes formes.
    Tout cela se passe dans la page de configuration du squelette. Il vous faut aller dans l’espace d’administration du canal, et choisir dans la navigation (...)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

Sur d’autres sites (4685)

  • Developers and vendors : Want a Matomo Hoodie ? Add a tag to the Matomo Open Source Tag Manager and this could be yours !

    7 juin 2018, par Matomo Core Team — Community, Development

    The Free Open Source Tag Manager is now available as a public beta on the Matomo Marketplace. Don’t know what a Tag Manager is ? Learn more here. In Short : It lets you easily manage all your third party JavaScript and HTML snippets (analytics, ads, social media, remarketing, affiliates, etc) through a single interface.

    Over the last few months we have worked on building the core for the Matomo Tag Manager which comes with a great set of features and a large set of pre-configured triggers and variables. However, we currently lack tags.

    This is where we need your help ! Together we can build a complete and industry leading open source tag manager.

    Tag examples include Google AdWords Conversion Tracking, Facebook Buttons, Facebook Pixels, Twitter Universal Website Tags, LinkedIn Insights.

    Are you a developer who is familiar with JavaScript and keen on adding a tag ? Or are you a vendor ? Don’t be shy, we appreciate any tags, even analytics related :) We have documented how to develop a new tag here, which is quite easy and straightforward. You may also need to understand a tiny bit of PHP but you’ll likely be fine even if you don’t (here is an example PHP file and the related JS file).

    As we want to ship the Matomo Tag Manager with as many tags as possible out of the box, we appreciate any new tag additions as a pull request on https://github.com/matomo-org/tag-manager.

    We will send out “Matomo Contributor” stickers that cannot be purchased anywhere for every contributor who contributes a tag within the next 3 months. As for the top 3 contributors… you’ll receive a Matomo hoodie ! Simply send us an email at hello@matomo.org after your tag has been merged. If needed, a draw will decide who gets the hoodies.

    FYI : The Matomo Tag Manager is already prepared to be handled in different contexts and we may possibly generate containers for Android and iOS. If you are keen on building the official Matomo SDKs for any of these mobile platforms, please get in touch.

  • ffmpeg - Writing thumbnail to Azure Blob Storage

    20 juin 2018, par Heinrich

    Is is possible to write directly to Azure using ffmpeg ? I am using ffmpeg to generate thumbnails for videos and I need to save them to an Azure Blob storage using a pre generated SAS url, is this possible ?
    When I run ffmpeg it seems to run happily, without any trace of errors as far as I can tell, but the file is never written\create in the storage. I know the target url works as I can upload a file to exact same url using postman.

    Below is the ffmpeg command that I am trying to get to work :

    .\ffmpeg.exe -i {srcurl} -loglevel 48 -frames:v 1 -y -method PUT -chunked_post 0 -headers "x-ms-blob-type: BlockBlob" -f apng {targeturl}

    I took the urls out as they are to long but the are both in the format as below :

    https://{host}.blob.core.windows.net/{pathtofile}/{filename}?sp=r&st=2018-06-03T23:07:25Z&se=2018-06-04T07:07:25Z&spr=https&sv=2017-11-09&sig={signature}

    Now I know that it works to some degree because if I write the file locally everything is happy. ffmpeg is able to get the video from the source url, read the file and create a thumbnail locally.

    The thing that confuses me more however is that if I specify a rubbish url path, one where I know it shouldn’t have permission to write to, it still does not complain at all.

    It is able to resolve the host name because changing the host to some non-existent one it will cause the "Failed to resolve hostname" error.

  • Open CV Codec FFMPEG Error fallback to use tag 0x7634706d/'mp4v'

    22 mai 2019, par Cohen

    Doing a filter recording and all is fine. The code is running, but at the end the video is not saved as MP4. I have this error :

    OpenCV: FFMPEG: tag 0x44495658/'XVID' is not supported with codec id 12 and format 'mp4 / MP4 (MPEG-4 Part 14)'
    OpenCV: FFMPEG: fallback to use tag 0x7634706d/'mp4v'

    Using a MAC and the code is running correctly, but is not saving. I tried to find more details about this error, but wasn’t so fortunate. I use as editor Sublime. The code run on Atom tough but is giving this error :

    OpenCV: FFMPEG: tag 0x44495658/'XVID' is not supported with codec id 12 and format 'mp4 / MP4 (MPEG-4 Part 14)'
    OpenCV: FFMPEG: fallback to use tag 0x7634706d/'mp4v'
    2018-05-28 15:04:25.274 Python[17483:2224774] AVF: AVAssetWriter status: Cannot create file

    ....

    import numpy as np
    import cv2
    import random
    from utils import CFEVideoConf, image_resize
    import glob
    import math


    cap = cv2.VideoCapture(0)

    frames_per_seconds = 24
    save_path='saved-media/filter.mp4'
    config = CFEVideoConf(cap, filepath=save_path, res='360p')
    out = cv2.VideoWriter(save_path, config.video_type, frames_per_seconds, config.dims)


    def verify_alpha_channel(frame):
       try:
           frame.shape[3] # looking for the alpha channel
       except IndexError:
           frame = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA)
       return frame


    def apply_hue_saturation(frame, alpha, beta):
       hsv_image = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
       h, s, v = cv2.split(hsv_image)
       s.fill(199)
       v.fill(255)
       hsv_image = cv2.merge([h, s, v])

       out = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
       frame = verify_alpha_channel(frame)
       out = verify_alpha_channel(out)
       cv2.addWeighted(out, 0.25, frame, 1.0, .23, frame)
       return frame


    def apply_color_overlay(frame, intensity=0.5, blue=0, green=0, red=0):
       frame = verify_alpha_channel(frame)
       frame_h, frame_w, frame_c = frame.shape
       sepia_bgra = (blue, green, red, 1)
       overlay = np.full((frame_h, frame_w, 4), sepia_bgra, dtype='uint8')
       cv2.addWeighted(overlay, intensity, frame, 1.0, 0, frame)
       return frame


    def apply_sepia(frame, intensity=0.5):
       frame = verify_alpha_channel(frame)
       frame_h, frame_w, frame_c = frame.shape
       sepia_bgra = (20, 66, 112, 1)
       overlay = np.full((frame_h, frame_w, 4), sepia_bgra, dtype='uint8')
       cv2.addWeighted(overlay, intensity, frame, 1.0, 0, frame)
       return frame


    def alpha_blend(frame_1, frame_2, mask):
       alpha = mask/255.0
       blended = cv2.convertScaleAbs(frame_1*(1-alpha) + frame_2*alpha)
       return blended


    def apply_circle_focus_blur(frame, intensity=0.2):
       frame = verify_alpha_channel(frame)
       frame_h, frame_w, frame_c = frame.shape
       y = int(frame_h/2)
       x = int(frame_w/2)

       mask = np.zeros((frame_h, frame_w, 4), dtype='uint8')
       cv2.circle(mask, (x, y), int(y/2), (255,255,255), -1, cv2.LINE_AA)
       mask = cv2.GaussianBlur(mask, (21,21),11 )

       blured = cv2.GaussianBlur(frame, (21,21), 11)
       blended = alpha_blend(frame, blured, 255-mask)
       frame = cv2.cvtColor(blended, cv2.COLOR_BGRA2BGR)
       return frame


    def portrait_mode(frame):
       cv2.imshow('frame', frame)
       gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
       _, mask = cv2.threshold(gray, 120,255,cv2.THRESH_BINARY)

       mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGRA)
       blured = cv2.GaussianBlur(frame, (21,21), 11)
       blended = alpha_blend(frame, blured, mask)
       frame = cv2.cvtColor(blended, cv2.COLOR_BGRA2BGR)
       return frame


    def apply_invert(frame):
       return cv2.bitwise_not(frame)

    while(True):
       # Capture frame-by-frame
       ret, frame = cap.read()
       frame = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA)
       #cv2.imshow('frame',frame)


       hue_sat = apply_hue_saturation(frame.copy(), alpha=3, beta=3)
       cv2.imshow('hue_sat', hue_sat)

       sepia = apply_sepia(frame.copy(), intensity=.8)
       cv2.imshow('sepia',sepia)

       color_overlay = apply_color_overlay(frame.copy(), intensity=.8, red=123, green=231)
       cv2.imshow('color_overlay',color_overlay)

       invert = apply_invert(frame.copy())
       cv2.imshow('invert', invert)

       blur_mask = apply_circle_focus_blur(frame.copy())
       cv2.imshow('blur_mask', blur_mask)

       portrait = portrait_mode(frame.copy())
       cv2.imshow('portrait',portrait)

       if cv2.waitKey(20) & 0xFF == ord('q'):
           break

    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()