
Recherche avancée
Médias (91)
-
Head down (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Echoplex (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Discipline (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Letting you (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
1 000 000 (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
999 999 (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
Autres articles (63)
-
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
MediaSPIP Core : La Configuration
9 novembre 2010, parMediaSPIP Core fournit par défaut trois pages différentes de configuration (ces pages utilisent le plugin de configuration CFG pour fonctionner) : une page spécifique à la configuration générale du squelettes ; une page spécifique à la configuration de la page d’accueil du site ; une page spécifique à la configuration des secteurs ;
Il fournit également une page supplémentaire qui n’apparait que lorsque certains plugins sont activés permettant de contrôler l’affichage et les fonctionnalités spécifiques (...) -
Creating farms of unique websites
13 avril 2011, parMediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)
Sur d’autres sites (9654)
-
ffmpeg - seamless crossfade loop for the part of video
14 janvier 2021, par Flamin GOI need to apply crossfade to the last X frames of a video with the first X frames in order to obtain a seamless loop, but making this for the necessary part of video.


Here's the answer for looping the entire video.


Currently what I have :
(Whole video duration = 25. Cutted (result) part = 15 sec (from 5 to 20 sec pos). Transition = 1 sec.)


ffmpeg -i input.mp4 -ss 5 -to 20 -filter_complex
 "[0]split[body][pre];
 [pre]trim=duration=1,format=yuva420p,fade=d=1:alpha=1,setpts=PTS+( (15+(5-1)) /TB)[jt];
 [body]trim=1,setpts=PTS-STARTPTS[main];
 [main][jt]overlay" -c:v libx264 -preset veryslow -b:v 2500K output.mp4
 



In this case, everything works, but at the end of the resulting video, a piece from the original video is superimposed, which starts from 0 to 1 second, and not from 4 to 5 seconds of the original video, as it should be.


I read the official ffmpeg documentation, tried some actions on "start/end" parameters for "trim/fade" with changing of "setpts", but I always got just another batch of bugs.


-
Why the output of the ffmpeg-python doesn't match the image shape ?
9 novembre 2019, par Swi JasonI used the
ffmpeg-python
module to convert video to images. Specifically, I used the code provided by the official git repo offfmpeg-python
, as belowout, _ = (
ffmpeg
.input(in_filename)
.filter('select', 'gte(n,{})'.format(frame_num))
.output('pipe:', vframes=1, format='image2', vcodec='mjpeg')
.run(capture_stdout=True)
)
im = np.frombuffer(out, 'uint8')
print(im.shape[0]/3/1080)
# 924.907098765432The original video is of size (1920, 1080) and pix_fmt ’yuv420p’, but the outputs of the above code is not 1920.
I have figured out by myself that the output of ffmpeg.run() is not a decoded image array, but a byte string encoded by JPEG format. To restore the image into a numpy array, simply use the cv2.imdecode() function. For example,
im = cv2.imdecode(im, cv2.IMREAD_COLOR)
However, I can’t use
opencv
on my embeded Linux system. So my question now is that, can I get numpy output fromffmpeg-python
directly, without the need of converting it by opencv ? -
libavfi/dnn : add LibTorch as one of DNN backend
15 mars 2024, par Wenbin Chenlibavfi/dnn : add LibTorch as one of DNN backend
PyTorch is an open source machine learning framework that accelerates
the path from research prototyping to production deployment. Official
website : https://pytorch.org/. We call the C++ library of PyTorch as
LibTorch, the same below.To build FFmpeg with LibTorch, please take following steps as
reference :
1. download LibTorch C++ library in
https://pytorch.org/get-started/locally/,
please select C++/Java for language, and other options as your need.
Please download cxx11 ABI version :
(libtorch-cxx11-abi-shared-with-deps-*.zip).
2. unzip the file to your own dir, with command
unzip libtorch-shared-with-deps-latest.zip -d your_dir
3. export libtorch_root/libtorch/include and
libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
4. config FFmpeg with ../configure —enable-libtorch \
—extra-cflag=-I/libtorch_root/libtorch/include \
—extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include \
—extra-ldflags=-L/libtorch_root/libtorch/lib/
5. makeTo run FFmpeg DNN inference with LibTorch backend :
./ffmpeg -i input.jpg -vf \
dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpgThe LibTorch_model.pt can be generated by Python with torch.jit.script()
api. https://pytorch.org/tutorials/advanced/cpp_export.html. This is
pytorch official guide about how to convert and load torchscript model.
Please note, torch.jit.trace() is not recommanded, since it does
not support ambiguous input size.Signed-off-by : Ting Fu <ting.fu@intel.com>
Signed-off-by : Wenbin Chen <wenbin.chen@intel.com>
Reviewed-by : Guo Yejun <yejun.guo@intel.com>