
Recherche avancée
Médias (1)
-
The Slip - Artworks
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
Autres articles (46)
-
Les autorisations surchargées par les plugins
27 avril 2010, parMediaspip core
autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...)
Sur d’autres sites (6992)
-
WARN : Tried to pass invalid video frame, marking as broken : Your frame has data type int64, but we require uint8
5 septembre 2019, par Tavo DiazI am doing some Udemy AI courses and came across with one that "teaches" a bidimensional cheetah how to walk. I was doing the exercises on my computer, but it takes too much time. I decided to use Google Cloud to run the code and see the results some hours after. Nevertheless, when I run the code I get the following error " WARN : Tried to pass
invalid video frame, marking as broken : Your frame has data type int64, but we require uint8 (i.e. RGB values from 0-255)".After the code is executed, I see into the folder and I don’t see any videos (just the meta info).
Some more info (if it helps) :
I have a 1 CPU (4g), SSD Ubuntu 16.04 LTSI have not tried anything yet to solve it because I don´t know what to try. Im looking for solutions on the web, but nothing I could try.
This is the code
import os
import numpy as np
import gym
from gym import wrappers
import pybullet_envs
class Hp():
def __init__(self):
self.nb_steps = 1000
self.episode_lenght = 1000
self.learning_rate = 0.02
self.nb_directions = 32
self.nb_best_directions = 32
assert self.nb_best_directions <= self.nb_directions
self.noise = 0.03
self.seed = 1
self.env_name = 'HalfCheetahBulletEnv-v0'
class Normalizer():
def __init__(self, nb_inputs):
self.n = np.zeros(nb_inputs)
self.mean = np.zeros(nb_inputs)
self.mean_diff = np.zeros(nb_inputs)
self.var = np.zeros(nb_inputs)
def observe(self, x):
self.n += 1.
last_mean = self.mean.copy()
self.mean += (x - self.mean) / self.n
#abajo es el online numerator update
self.mean_diff += (x - last_mean) * (x - self.mean)
#abajo online computation de la varianza
self.var = (self.mean_diff / self.n).clip(min = 1e-2)
def normalize(self, inputs):
obs_mean = self.mean
obs_std = np.sqrt(self.var)
return (inputs - obs_mean) / obs_std
class Policy():
def __init__(self, input_size, output_size):
self.theta = np.zeros((output_size, input_size))
def evaluate(self, input, delta = None, direction = None):
if direction is None:
return self.theta.dot(input)
elif direction == 'positive':
return (self.theta + hp.noise * delta).dot(input)
else:
return (self.theta - hp.noise * delta).dot(input)
def sample_deltas(self):
return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]
def update (self, rollouts, sigma_r):
step = np.zeros(self.theta.shape)
for r_pos, r_neg, d in rollouts:
step += (r_pos - r_neg) * d
self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step
def explore(env, normalizer, policy, direction = None, delta = None):
state = env.reset()
done = False
num_plays = 0.
#abajo puede ser promedio de las rewards
sum_rewards = 0
while not done and num_plays < hp.episode_lenght:
normalizer.observe(state)
state = normalizer.normalize(state)
action = policy.evaluate(state, delta, direction)
state, reward, done, _ = env.step(action)
reward = max(min(reward, 1), -1)
#abajo sería poner un promedio
sum_rewards += reward
num_plays += 1
return sum_rewards
def train (env, policy, normalizer, hp):
for step in range(hp.nb_steps):
#iniciar las perturbaciones deltas y los rewards positivos/negativos
deltas = policy.sample_deltas()
positive_rewards = [0] * hp.nb_directions
negative_rewards = [0] * hp.nb_directions
#sacar las rewards en la dirección positiva
for k in range(hp.nb_directions):
positive_rewards[k] = explore(env, normalizer, policy, direction = 'positive', delta = deltas[k])
#sacar las rewards en dirección negativo
for k in range(hp.nb_directions):
negative_rewards[k] = explore(env, normalizer, policy, direction = 'negative', delta = deltas[k])
#sacar todas las rewards para sacar la desvest
all_rewards = np.array(positive_rewards + negative_rewards)
sigma_r = all_rewards.std()
#acomodar los rollauts por el max (r_pos, r_neg) y seleccionar la mejor dirección
scores = {k:max(r_pos, r_neg) for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
#actualizar policy
policy.update (rollouts, sigma_r)
#poner el final reward del policy luego del update
reward_evaluation = explore (env, normalizer, policy)
print('Paso: ', step, 'Lejania: ', reward_evaluation)
def mkdir(base, name):
path = os.path.join(base, name)
if not os.path.exists(path):
os.makedirs(path)
return path
work_dir = mkdir('exp', 'brs')
monitor_dir = mkdir(work_dir, 'monitor')
hp = Hp()
np.random.seed(hp.seed)
env = gym.make(hp.env_name)
env = wrappers.Monitor(env, monitor_dir, force = True)
nb_inputs = env.observation_space.shape[0]
nb_outputs = env.action_space.shape[0]
policy = Policy(nb_inputs, nb_outputs)
normalizer = Normalizer(nb_inputs)
train(env, policy, normalizer, hp) -
Anomalie #4737 : Erreur recherche dans les forums dans le privé
9 juillet 2021, par JLuc -Avec ou sans "plat", le SQL généré est :
- <span class="CodeRay"><span class="class">SELECT</span> forum.id_forum, resultats.points <span class="keyword">AS</span> points, forum.statut
- <span class="keyword">FROM</span> spip_forum <span class="keyword">AS</span> <span class="string"><span class="delimiter">`</span><span class="content">forum</span><span class="delimiter">`</span></span>
- <span class="keyword">INNER</span> <span class="keyword">JOIN</span> spip_resultats <span class="keyword">AS</span> resultats <span class="keyword">ON</span> ( resultats.id = forum.id_forum )
- <span class="keyword">WHERE</span> <span class="keyword">NOT</span>((forum.statut <span class="keyword">LIKE</span> <span class="string"><span class="delimiter">'</span><span class="content">priv%</span><span class="delimiter">'</span></span>))
- <span class="keyword">AND</span> (resultats.recherche=<span class="string"><span class="delimiter">'</span><span class="content">c7b4cacf770e2915</span><span class="delimiter">'</span></span> <span class="keyword">AND</span> resultats.table_objet=<span class="string"><span class="delimiter">'</span><span class="content">forum</span><span class="delimiter">'</span></span> <span class="keyword">AND</span> resultats.serveur=<span class="string"><span class="delimiter">'</span><span class="delimiter">'</span></span>)
- <span class="keyword">GROUP</span> <span class="keyword">BY</span> forum.id_forum
- <span class="keyword">ORDER</span> <span class="keyword">BY</span> forum.id_forum <span class="directive">DESC</span>
- </span>
Le pb vient du fait que c’est le forum id_thread qui est enregistré dans la table spip_resultats.
-
Anomalie #4438 (En cours) : Manque Msg :message:lien_reponse_message :
26 février 2020, par b bJe confirme en 3.2.7 sur spip.net, mais je ne reproduis pas sur le trunk, en 3.3 donc, ni en 3.2.5 sur blog.spip.net. Cela vient de cet appel alambiqué de chaîne de langue
[(#OBJET|concat{:lien_reponse_,#OBJET}|_T)]
cf https://zone.spip.org/trac/spip-zone/browser/spip-zone/_core_/tags/spip-3.2.7/plugins/forum/prive/modeles/forum.html#L29PS : je laisse le bug sur le projet core et non forum car ça semble impliquer
_T()
.