
Recherche avancée
Médias (91)
-
Les Miserables
9 décembre 2019, par
Mis à jour : Décembre 2019
Langue : français
Type : Textuel
-
VideoHandle
8 novembre 2019, par
Mis à jour : Novembre 2019
Langue : français
Type : Video
-
Somos millones 1
21 juillet 2014, par
Mis à jour : Juin 2015
Langue : français
Type : Video
-
Un test - mauritanie
3 avril 2014, par
Mis à jour : Avril 2014
Langue : français
Type : Textuel
-
Pourquoi Obama lit il mes mails ?
4 février 2014, par
Mis à jour : Février 2014
Langue : français
-
IMG 0222
6 octobre 2013, par
Mis à jour : Octobre 2013
Langue : français
Type : Image
Autres articles (96)
-
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
Multilang : améliorer l’interface pour les blocs multilingues
18 février 2011, parMultilang est un plugin supplémentaire qui n’est pas activé par défaut lors de l’initialisation de MediaSPIP.
Après son activation, une préconfiguration est mise en place automatiquement par MediaSPIP init permettant à la nouvelle fonctionnalité d’être automatiquement opérationnelle. Il n’est donc pas obligatoire de passer par une étape de configuration pour cela. -
Des sites réalisés avec MediaSPIP
2 mai 2011, parCette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.
Sur d’autres sites (7314)
-
Run docker container with FFMPEG rstp stream on websockets
18 février, par bmvrI have create a node js application that uses ffmpeg with spawn node library.


Here's the backend sample :


const startStreamWs = (cameraId, rtsp_url) => {
 console.log(`Starting stream for camera: ${cameraId}`);

 const ffmpeg = spawn("ffmpeg", [
 "-rtsp_transport", "tcp", // Use TCP for reliable streaming
 "-i", rtsp_url,
 "-analyzeduration", "5000000", // Increase analyzeduration
 "-probesize", "5000000", // Increase probesize
 "-fflags", "nobuffer", // Reduce buffering
 "-flags", "low_delay", // Low latency
 "-strict", "experimental",
 "-max_delay", "200000", // Reduce max delay for faster response
 "-bufsize", "2M", // Buffer size for smoother streaming
 "-f", "mpegts", // MPEG-TS container for streaming
 "-codec:v", "mpeg1video", // MPEG-1 video codec
 "-s", "1280x720", // Video resolution
 "-r", "25", // Frame rate (25 fps)
 "-b:v", "1500k", // Bitrate for video
 "-maxrate", "2000k", // Maximum bitrate
 "-bufsize", "2M", // Buffer size (needed with maxrate)
 "-bf", "0", // Disable B-frames for lower latency
 "-an", // Disable audio
 "-"
]);


 ffmpeg.stdout.on("data", (data) => {
 if (cameraStreams[cameraId]) {
 console.log(`Data sent for camera ${cameraId}`);
 // Broadcast stream data to all connected clients
 for (const client of cameraStreams[cameraId].clients) {
 if (client.readyState === ws.OPEN) {
 client.send(data);
 }
 }
 }
 });

 ffmpeg.stderr.on("data", (data) => {
 console.error(`FFmpeg stderr (Camera ${cameraId}): ${data.toString()}`);
 logErrorToFile(data);
 });

 ffmpeg.on("close", (code) => {
 console.log(`FFmpeg process exited for Camera ${cameraId} with code ${code}`);
 if (cameraStreams[cameraId]) {
 // Close all remaining clients
 for (const client of cameraStreams[cameraId].clients) {
 client.close();
 }
 delete cameraStreams[cameraId];
 }
 });

 return ffmpeg;
};



Front End Sample my angular component


import { Component, OnDestroy, OnInit } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { ActivatedRoute } from '@angular/router';

declare var JSMpeg: any; // Declare JSMpeg from the global script

@Component({
 selector: 'app-video-player',
 templateUrl: './video-player.component.html',
 styleUrls: ['./video-player.component.css'],
 standalone: false
})
export class VideoPlayerComponent implements OnInit, OnDestroy {
 stepSize: number = 0.1;
 private player: any;
 cameraId: string | null = null;
 ws: WebSocket | null = null; 
 wsUrl: string | null = null;

 constructor(private route: ActivatedRoute) {
 this.cameraId = this.route.snapshot.paramMap.get('id');
 this.wsUrl = `ws://localhost:8085?cameraId=${this.cameraId}`;
 this.ws = new WebSocket(this.wsUrl);
 }

 async ngOnInit(): Promise<void> {
 const canvas = document.getElementById('videoCanvas') as HTMLCanvasElement;
 this.player = new JSMpeg.Player(this.wsUrl, { canvas: canvas });
 }

 async ngOnDestroy(): Promise<void> {
 this.ws?.close(1000, "Exiting");
 }

 getStepSize(): number {
 return this.stepSize;
 }
}


</void></void>


On localhost is fine, once i containerize, it's not. I can serve the website but not the stream.
I have the same version FFMPEG 7.1 and the codec is available.
Although I run localhost macosx and unbutu on docker.


-
WARN : Tried to pass invalid video frame, marking as broken : Your frame has data type int64, but we require uint8
5 septembre 2019, par Tavo DiazI am doing some Udemy AI courses and came across with one that "teaches" a bidimensional cheetah how to walk. I was doing the exercises on my computer, but it takes too much time. I decided to use Google Cloud to run the code and see the results some hours after. Nevertheless, when I run the code I get the following error " WARN : Tried to pass
invalid video frame, marking as broken : Your frame has data type int64, but we require uint8 (i.e. RGB values from 0-255)".After the code is executed, I see into the folder and I don’t see any videos (just the meta info).
Some more info (if it helps) :
I have a 1 CPU (4g), SSD Ubuntu 16.04 LTSI have not tried anything yet to solve it because I don´t know what to try. Im looking for solutions on the web, but nothing I could try.
This is the code
import os
import numpy as np
import gym
from gym import wrappers
import pybullet_envs
class Hp():
def __init__(self):
self.nb_steps = 1000
self.episode_lenght = 1000
self.learning_rate = 0.02
self.nb_directions = 32
self.nb_best_directions = 32
assert self.nb_best_directions <= self.nb_directions
self.noise = 0.03
self.seed = 1
self.env_name = 'HalfCheetahBulletEnv-v0'
class Normalizer():
def __init__(self, nb_inputs):
self.n = np.zeros(nb_inputs)
self.mean = np.zeros(nb_inputs)
self.mean_diff = np.zeros(nb_inputs)
self.var = np.zeros(nb_inputs)
def observe(self, x):
self.n += 1.
last_mean = self.mean.copy()
self.mean += (x - self.mean) / self.n
#abajo es el online numerator update
self.mean_diff += (x - last_mean) * (x - self.mean)
#abajo online computation de la varianza
self.var = (self.mean_diff / self.n).clip(min = 1e-2)
def normalize(self, inputs):
obs_mean = self.mean
obs_std = np.sqrt(self.var)
return (inputs - obs_mean) / obs_std
class Policy():
def __init__(self, input_size, output_size):
self.theta = np.zeros((output_size, input_size))
def evaluate(self, input, delta = None, direction = None):
if direction is None:
return self.theta.dot(input)
elif direction == 'positive':
return (self.theta + hp.noise * delta).dot(input)
else:
return (self.theta - hp.noise * delta).dot(input)
def sample_deltas(self):
return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]
def update (self, rollouts, sigma_r):
step = np.zeros(self.theta.shape)
for r_pos, r_neg, d in rollouts:
step += (r_pos - r_neg) * d
self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step
def explore(env, normalizer, policy, direction = None, delta = None):
state = env.reset()
done = False
num_plays = 0.
#abajo puede ser promedio de las rewards
sum_rewards = 0
while not done and num_plays < hp.episode_lenght:
normalizer.observe(state)
state = normalizer.normalize(state)
action = policy.evaluate(state, delta, direction)
state, reward, done, _ = env.step(action)
reward = max(min(reward, 1), -1)
#abajo sería poner un promedio
sum_rewards += reward
num_plays += 1
return sum_rewards
def train (env, policy, normalizer, hp):
for step in range(hp.nb_steps):
#iniciar las perturbaciones deltas y los rewards positivos/negativos
deltas = policy.sample_deltas()
positive_rewards = [0] * hp.nb_directions
negative_rewards = [0] * hp.nb_directions
#sacar las rewards en la dirección positiva
for k in range(hp.nb_directions):
positive_rewards[k] = explore(env, normalizer, policy, direction = 'positive', delta = deltas[k])
#sacar las rewards en dirección negativo
for k in range(hp.nb_directions):
negative_rewards[k] = explore(env, normalizer, policy, direction = 'negative', delta = deltas[k])
#sacar todas las rewards para sacar la desvest
all_rewards = np.array(positive_rewards + negative_rewards)
sigma_r = all_rewards.std()
#acomodar los rollauts por el max (r_pos, r_neg) y seleccionar la mejor dirección
scores = {k:max(r_pos, r_neg) for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
#actualizar policy
policy.update (rollouts, sigma_r)
#poner el final reward del policy luego del update
reward_evaluation = explore (env, normalizer, policy)
print('Paso: ', step, 'Lejania: ', reward_evaluation)
def mkdir(base, name):
path = os.path.join(base, name)
if not os.path.exists(path):
os.makedirs(path)
return path
work_dir = mkdir('exp', 'brs')
monitor_dir = mkdir(work_dir, 'monitor')
hp = Hp()
np.random.seed(hp.seed)
env = gym.make(hp.env_name)
env = wrappers.Monitor(env, monitor_dir, force = True)
nb_inputs = env.observation_space.shape[0]
nb_outputs = env.action_space.shape[0]
policy = Policy(nb_inputs, nb_outputs)
normalizer = Normalizer(nb_inputs)
train(env, policy, normalizer, hp) -
Error being thrown by ffmpeg and ffserver, not getting a stream
2 novembre 2015, par rothemani am trying to stream a file that I have in my directory using ffmpeg and ffserver. But an error occurs in both ffmpeg and ffserver. The following is my ffserver config file.
HTTPPort 8092
HTTPBindAddress 0.0.0.0
MaxHTTPConnections 2000
MaxClients 1000
MaxBandwidth 2000
CustomLog -
#NoDaemon
NoDefaults
<feed>
File /tmp/feed1.ffm
FileMaxSize 20M
ACL allow 127.0.0.1
</feed>
<stream>
Feed feed1.ffm
Format webm
AudioCodec vorbis
AudioBitRate 64
VideoCodec libvpx
VideoSize 720x576
VideoFrameRate 25
AVOptionVideo flags +global_header
AVOptionVideo cpu-used 0
AVOptionVideo qmin 10
AVOptionVideo qmax 42
AVOptionVideo quality good
AVOptionAudio flags +global_header
PreRoll 15
StartSendOnKey
VideoBitRate 400
AudioSampleRate 44100
</stream>I am able to start ffserver properly with no problems but when i try to serve ffserver with a file using ffmpeg, this happens
ffmpeg -i sam.webm http://127.0.0.1:8092/feed1.ffm -vcodec copy
ffmpeg version N-72738-g7630cce Copyright (c) 2000-2015 the FFmpeg developers
built with gcc 4.8 (Ubuntu 4.8.2-19ubuntu1)
configuration: --enable-libvpx --enable-libvorbis --enable-libx264 --enable-gpl --enable-nonfree
libavutil 54. 27.100 / 54. 27.100
libavcodec 56. 41.100 / 56. 41.100
libavformat 56. 36.100 / 56. 36.100
libavdevice 56. 4.100 / 56. 4.100
libavfilter 5. 16.101 / 5. 16.101
libswscale 3. 1.101 / 3. 1.101
libswresample 1. 2.100 / 1. 2.100
libpostproc 53. 3.100 / 53. 3.100
Trailing options were found on the commandline.
Input #0, matroska,webm, from 'sam.webm':
Metadata:
title : Sintel Trailer
encoder : Lavf56.25.101
Duration: 00:00:52.21, start: 0.000000, bitrate: 305 kb/s
Stream #0:0: Video: vp8, yuv420p, 854x480, SAR 1:1 DAR 427:240, 24 fps, 24 tbr, 1k tbn, 1k tbc (default)
Stream #0:1: Audio: vorbis, 48000 Hz, stereo, fltp (default)
[libvpx @ 0x367e180] v1.3.0
Output #0, ffm, to 'http://127.0.0.1:8092/feed1.ffm':
Metadata:
title : Sintel Trailer
creation_time : now
encoder : Lavf56.36.100
Stream #0:0: Audio: vorbis (libvorbis), 44100 Hz, stereo, fltp, 64 kb/s (default)
Metadata:
encoder : Lavc56.41.100 libvorbis
Stream #0:1: Video: vp8 (libvpx), yuv420p, 720x576 [SAR 427:300 DAR 427:240], q=10-42, 400 kb/s, 24 fps, 1000k tbn, 25 tbc (default)
Metadata:
encoder : Lavc56.41.100 libvpx
Stream mapping:
Stream #0:1 -> #0:0 (vorbis (native) -> vorbis (libvorbis))
Stream #0:0 -> #0:1 (vp8 (native) -> vp8 (libvpx))
Press [q] to stop, [?] for help
av_interleaved_write_frame(): Connection reset by peer
Last message repeated 2 times
frame= 14 fps=0.0 q=0.0 Lsize= 16kB time=00:00:00.56 bitrate= 234.1kbits/s dup=1 drop=0
video:1kB audio:2kB subtitle:0kB other streams:0kB global headers:4kB muxing overhead: 327.780670%
Conversion failed!And this is the message i get in ffserver when this error happens in ffmpeg.
ffserver
ffserver version N-72738-g7630cce Copyright (c) 2000-2015 the FFmpeg developers
built with gcc 4.8 (Ubuntu 4.8.2-19ubuntu1)
configuration: --enable-libvpx --enable-libvorbis --enable-libx264 --enable-gpl --enable-nonfree
libavutil 54. 27.100 / 54. 27.100
libavcodec 56. 41.100 / 56. 41.100
libavformat 56. 36.100 / 56. 36.100
libavdevice 56. 4.100 / 56. 4.100
libavfilter 5. 16.101 / 5. 16.101
libswscale 3. 1.101 / 3. 1.101
libswresample 1. 2.100 / 1. 2.100
libpostproc 53. 3.100 / 53. 3.100
Mon Jun 8 18:38:28 2015 FFserver started.
Mon Jun 8 18:38:40 2015 127.0.0.1 - - [GET] "/feed1.ffm HTTP/1.1" 200 4175
Mon Jun 8 18:38:40 2015 [NULL @ 0x29878a0]Missing key or no key/value separator found after key 'pkt_timebase'
Mon Jun 8 18:38:40 2015 Feed '/tmp/feed1.ffm' stream number does not match registered feed
Mon Jun 8 18:38:40 2015 127.0.0.1 - - [POST] "/feed1.ffm HTTP/1.1" 200 4096Can someone please help me ?