
Recherche avancée
Médias (1)
-
Rennes Emotion Map 2010-11
19 octobre 2011, par
Mis à jour : Juillet 2013
Langue : français
Type : Texte
Autres articles (50)
-
List of compatible distributions
26 avril 2011, parThe table below is the list of Linux distributions compatible with the automated installation script of MediaSPIP. Distribution nameVersion nameVersion number Debian Squeeze 6.x.x Debian Weezy 7.x.x Debian Jessie 8.x.x Ubuntu The Precise Pangolin 12.04 LTS Ubuntu The Trusty Tahr 14.04
If you want to help us improve this list, you can provide us access to a machine whose distribution is not mentioned above or send the necessary fixes to add (...) -
Other interesting software
13 avril 2011, parWe don’t claim to be the only ones doing what we do ... and especially not to assert claims to be the best either ... What we do, we just try to do it well and getting better ...
The following list represents softwares that tend to be more or less as MediaSPIP or that MediaSPIP tries more or less to do the same, whatever ...
We don’t know them, we didn’t try them, but you can take a peek.
Videopress
Website : http://videopress.com/
License : GNU/GPL v2
Source code : (...) -
MediaSPIP Init et Diogène : types de publications de MediaSPIP
11 novembre 2010, parÀ l’installation d’un site MediaSPIP, le plugin MediaSPIP Init réalise certaines opérations dont la principale consiste à créer quatre rubriques principales dans le site et de créer cinq templates de formulaire pour Diogène.
Ces quatre rubriques principales (aussi appelées secteurs) sont : Medias ; Sites ; Editos ; Actualités ;
Pour chacune de ces rubriques est créé un template de formulaire spécifique éponyme. Pour la rubrique "Medias" un second template "catégorie" est créé permettant d’ajouter (...)
Sur d’autres sites (7954)
-
How to solve error : "cvCreateFileCaptureWithPreference : backend FFMPEG doesn't support legacy API anymore"
24 octobre 2018, par SarvinI am trying to build and run an OpenCV project from Github using OpenCV 3.4.2, Cmake 3.13.0-rc1 and VS 2017. The project builds successfully as I understand from the build output but it throws the above warning after I run the program. The video I want to load is in a .AVI format and uses cvCaptureFromAVI function. Just trying to learn OpenCV, your help and kindness is appreciated.
Source :
#include <iostream>
#include <opencv2></opencv2>opencv.hpp>
#include "package_bgs/PBAS/PixelBasedAdaptiveSegmenter.h"
#include "package_tracking/BlobTracking.h"
#include "package_analysis/VehicleCouting.h"
using namespace cv;
int main(int argc, char **argv)
{
std::cout << "Using OpenCV " << CV_MAJOR_VERSION << "." <<
CV_MINOR_VERSION << "." << CV_SUBMINOR_VERSION << std::endl;
/* Open video file */
CvCapture *capture = 0;
capture = cvCaptureFromAVI("video.avi");
if(!capture){
std::cerr << "Cannot open video ting tong!" << std::endl;
return 1;
}
/* Background Subtraction Algorithm */
IBGS *bgs;
bgs = new PixelBasedAdaptiveSegmenter;
/* Blob Tracking Algorithm */
cv::Mat img_blob;
BlobTracking* blobTracking;
blobTracking = new BlobTracking;
/* Vehicle Counting Algorithm */
VehicleCouting* vehicleCouting;
vehicleCouting = new VehicleCouting;
std::cout << "Press 'q' to quit..." << std::endl;
int key = 0;
IplImage *frame;
while(key != 'q')
{
frame = cvQueryFrame(capture);
if(!frame) break;
cv::Mat img_input = cv::cvarrToMat(frame);
cv::imshow("Input", img_input);
// bgs->process(...) internally process and show the foreground mask image
cv::Mat img_mask;
bgs->process(img_input, img_mask);
if(!img_mask.empty())
{
// Perform blob tracking
blobTracking->process(img_input, img_mask, img_blob);
// Perform vehicle counting
vehicleCouting->setInput(img_blob);
vehicleCouting->setTracks(blobTracking->getTracks());
vehicleCouting->process();
}
key = cvWaitKey(1);
}
delete vehicleCouting;
delete blobTracking;
delete bgs;
cvDestroyAllWindows();
cvReleaseCapture(&capture);
return 0;
}
</iostream>Error :
-
Live stream is gets delayed while processing frame in opencv + python
18 mars 2021, par Himanshu sharmaI capture and process an IP camera RTSP stream in a OpenCV 4.4.0.46 on Ubuntu.
Unfortunately the processing takes quite a lot of time, roughly 0.2s per frame, and the stream quickly gets delayed.
Video file have to save for 5 min but by this delaying video file is saved for 3-4 min only.


Can we process faster to overcome delays ?


I have two IP camera which have two diffrent fps_rate(Camera 1 have 18000 and camera 2 have 20 fps)


I am implementing this code in difference Ubuntu PCs


- 

- Python 3.8.5 (default, Jul 28 2020, 12:59:40) [GCC 9.3.0] on linux
- Django==3.1.2
- Ubuntu = 18.04 and 20.04
- opencv-contrib-python==4.4.0.46
- opencv-python==4.4.0.46












input_stream = 'rtsp://'+username+':'+password+'@'+ip+'/user='+username+'_password='+password+'_channel=0channel_number_stream=0.sdp'
input_stream---> rtsp://admin:Admin123@192.168.1.208/user=admin_password=Admin123_channel=0channel_number_stream=0.sdp

input_stream---> rtsp://Admin:@192.168.1.209/user=Admin_password=_channel=0channel_number_stream=0.sdp

vs = cv2.VideoCapture(input_stream)
fps_rate = int(vs.get(cv2.CAP_PROP_FPS))
I have two IP camera which have two diffrent fps_rate(Camera 1 have 18000 and camera 2 have 20 fps)

video_file_name = 0
start_time = time.time()
while(True):
 ret, frame = vs.read()
 time.sleep(0.2) # <= Simulate processing time (mask detection, face detection and many detection is hapning)


 ### Start of writing a video to disk 
 minute = 5 ## saving a file for 5 minute only then saving another file for 5 min
 second = 60
 minite_to_save_video = int(minute) * int(second)


 # if we are supposed to be writing a video to disk, initialize
 if time.time() - start_time >= minite_to_save_video or video_file_name == 0 :
 ## where H = heigth, W = width, C = channel 
 H, W, C = frame.shape
 
 print('time.time()-->',time.time(),'video_file_name-->', video_file_name, ' #####')
 start_time = time.time()

 video_file_name = str(time.mktime(datetime.datetime.now().timetuple())).replace('.0', '')
 output_save_directory = output_stream+str(int(video_file_name))+'.mp4'


 fourcc = cv2.VideoWriter_fourcc(*'avc1')
 
 writer = cv2.VideoWriter(output_save_directory, fourcc,20.0,(W, H), True)

 # check to see if we should write the frame to disk
 if writer is not None:
 
 try:
 writer.write(frame)

 except Exception as e:
 print('Error in writing video output---> ', e)



-
How to save media files to Heroku local storage with Django ?
25 juillet 2022, par Diyan KalaydzhievIm having a Django REST app with React for client. Im recording a file with React and sending in to Django. When i save it i modify it with ffmpeg and save it again in the same folder with a new name, the ffmpeg command looks like this :


os.system(f"ffmpeg -i {audio_path} -ac 1 -ar 16000 {target_path}")


Because i need a path for my audio both for opening and saving, i can't use cloud stores like "Bucket S3, Cloudinary etc.". And the fact that im using it only for a few seconds and then deleting it makes Heroku (the app is deployed there) the perfect place to save it non-persistent. The problem is that the file isn't getting saved in my library with media files. It saves in the postgre db but doesn't in my filesystem and when i try to access it my program returns that there isn't a file with that name. My question is How can i save media files in Heroku file system and how to access them ?


settings.py


MEDIA_ROOT = os.path.join(BASE_DIR,'EmotionTalk/AI_emotion_recognizer/recordings')
MEDIA_URL = '/'



urls.py


urlpatterns = [
path('admin/', admin.site.urls),
path('', include('EmotionTalk.emotion_talk_app.urls')),
path('auth/', include('EmotionTalk.auth_app.urls')),
path('api-token-auth/', views.obtain_auth_token),
] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) \
+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)



views.py


def post(self, request):
 file_serializer = RecordingSerializer(data=request.data)

 if file_serializer.is_valid():
 file_serializer.save()

 file_name = file_serializer.data.get('recording')
 owner_id = file_serializer.data.get('owner_id')

 current_emotions_count = len(Profile.objects.get(user_id=owner_id).last_emotions)

 print(file_name)
 recognize_emotion.delay(file_name, owner_id)

 return Response({
 'data': file_serializer.data,
 'current_emotions_count': current_emotions_count
 }, status=status.HTTP_201_CREATED)

 return Response(file_serializer.errors, status=status.HTTP_400_BAD_REQUEST)



tasks.py


def parse_arguments(filename):
import argparse
parser = argparse.ArgumentParser()

new_filename = filename.lstrip('v')

parser.add_argument("audio_path")
parser.add_argument("target_path")

args = parser.parse_args([f'EmotionTalk/AI_emotion_recognizer/recordings/{filename}',
 f'EmotionTalk/AI_emotion_recognizer/recordings/{new_filename}'])
audio_path = args.audio_path
target_path = args.target_path

if os.path.isfile(audio_path) and audio_path.endswith(".wav"):
 if not target_path.endswith(".wav"):
 target_path += ".wav"
 convert_audio(audio_path, target_path)
 return target_path
else:
 raise TypeError("The audio_path file you specified isn't appropriate for this operation")



parse_arguments is called from recognize_emotion