Recherche avancée

Médias (0)

Mot : - Tags -/protocoles

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (49)

  • Les tâches Cron régulières de la ferme

    1er décembre 2010, par

    La gestion de la ferme passe par l’exécution à intervalle régulier de plusieurs tâches répétitives dites Cron.
    Le super Cron (gestion_mutu_super_cron)
    Cette tâche, planifiée chaque minute, a pour simple effet d’appeler le Cron de l’ensemble des instances de la mutualisation régulièrement. Couplée avec un Cron système sur le site central de la mutualisation, cela permet de simplement générer des visites régulières sur les différents sites et éviter que les tâches des sites peu visités soient trop (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Emballe médias : à quoi cela sert ?

    4 février 2011, par

    Ce plugin vise à gérer des sites de mise en ligne de documents de tous types.
    Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ;

Sur d’autres sites (4431)

  • Can't get FFMPEG buildpack working in Heroku Node.js server (using Fluent-FFMPEG)

    30 juillet 2021, par Rayhan Memon

    I'm using a library called 'fluent-ffmpeg' on my Nodejs server that makes it easier to use an audio/video editing tool called FFmpeg, which is downloaded locally on my computer.

    


    When running on my computer, I point fluent-ffmpeg to the local executable files of FFmpeg and FFprobe on my computer, like so :

    


    import ffmpeg from "fluent-ffmpeg";

// When running locally, set FFmpeg and FFprobe path to the local executable files
ffmpeg.setFfmpegPath("C:/Program Files/FFMPEG/ffmpeg.exe");
ffmpeg.setFfprobePath("C:/Program Files/FFMPEG/ffprobe.exe");


    


    When deploying to Heroku, I must use an FFmpeg 'buildpack'.

    


    I've tried two :

    


      

    1. https://github.com/jonathanong/heroku-buildpack-ffmpeg-latest
    2. 


    3. https://github.com/HasibulKabir/heroku-buildpack-ffmpeg-ffprobe
    4. 


    


    Neither have worked for me. Whenever I use an FFmpeg command, I get the following error in my heroku logs :

    


    2021-07-24T15:22:52.970990+00:00 app[web.1]:   code: 'ENOENT',
2021-07-24T15:22:52.970990+00:00 app[web.1]:   syscall: 'spawn C:/Program Files/FFMPEG/',
2021-07-24T15:22:52.970990+00:00 app[web.1]:   path: 'C:/Program Files/FFMPEG/',
2021-07-24T15:22:52.970991+00:00 app[web.1]:   spawnargs: [
2021-07-24T15:22:52.970991+00:00 app[web.1]:     '-show_streams',
2021-07-24T15:22:52.970991+00:00 app[web.1]:     '-show_format',
2021-07-24T15:22:52.970992+00:00 app[web.1]:     'temp/cf3b5f1ae270df824921364573a4366b'
2021-07-24T15:22:52.970992+00:00 app[web.1]:   ]
2021-07-24T15:22:52.970992+00:00 app[web.1]: }


    


    How can I go about using fluent-ffmpeg in my Nodejs server when deploying to Heroku ?

    


    Thank you for the help in advance !

    


  • RNFFMpeg.executeAsync : Unable to create gif of a video with space(s) in it's source path

    7 juillet 2021, par STBox

    Unable to make gif of a video which has space(s) in it's source directory. All the other video which don't have space(s), their gif is making fine. I had a video whose folder name had space and it was not making gif for it. I copied the same video to a folder without space in it's name, and it made gif for it successfully. Even if I replace the the space with source path with anything like %20 etc, then it says

    


    


    No such file or directory

    


    


    Code snippet

    


    

    

    RNFFmpeg.executeAsync(
          `-i ${source} -ss ${start} -t ${gifDuration}  -vf "fps=5,scale=160:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse" -loop 0 ${destination}`, (completedExecution) => {
            if (completedExecution.returnCode === 0) {
              resolve({ path: destination });
            } else {
              resolve({ error: "invalid Gif" });  // always this part executes for videos with space in their source path
            }
          }
        );

    


    


    



    Expected behavior

    


    Regardless a video has or has not a space in it's path, it should make gif correctly and

    


    


    completedExecution.returnCode

    


    


    should be 0

    


    Current behavior
Currently, for all the videos having space in their source path, completedExecution.returnCode is always 1

    


    Logs of the same video without space in folder name

    


    


    [Wed Jul 07 2021 12:23:56.377] LOG file :///storage/emulated/0/AirDroid/VID-20210620-WA0024.mp4 [Wed Jul

    


    


    


    07 2021 12:23:56.511] LOG [Parsed_palettegen_3 @ 0x7d62eb5ec0] 255(+1) colors generated out of 249823 colors ; ratio=0.001021 [Wed Jul 07 2021 12:23:56.672] LOG video:48kB audio:0kB subtitle:0kB other streams:0kB

    


    


    


    global headers:0kB muxing overhead : [Wed Jul 07 2021 12:23:56.673] LOG

    


    


    


    0.041083% [Wed Jul 07 2021 12:23:56.722] LOG "path" : "/data/user/0/com.tbox.pantry/cache/1625642625930.gif"

    


    


    Logs of the same video with space in folder name

    


    


    [Wed Jul 07 2021 12:20:45.577] LOG

    


    


    


    file :///storage/emulated/0/FMWhatsApp/Media/FMWhatsApp

    


    


    


    Video/VID-20210620-WA0024.mp4 [Wed Jul 07 2021 12:20:45.998] LOG

    


    


    


    file :///storage/emulated/0/FMWhatsApp/Media/FMWhatsApp : No such file

    


    


    


    or directory [Wed Jul 07 2021 12:20:45.998] LOG Conversion failed !

    


    


    


    [Wed Jul 07 2021 12:20:45.999] LOG "error" : "invalid Gif"

    


    


    Environment

    


    "react" : "16.13.1",
"react-native" : "^0.63.3",
"react-native-ffmpeg" : "0.5.1",
Android 11

    


  • Can't use OpenCV to decode video on GPU with cv2.CAP_FFMPEG

    19 juillet 2021, par Reza

    I'm trying to get all frames of list of videos(lots of .mp4 videos) using OpenCV. In order to speed up the process I was thinking may be I can use FFMPEG with Nvidia Video Codec SDK to use hardware-accelerated decoding(I have T4 cards on my machine). My code is something like this :

    


    import os
os.environ["OPENCV_FFMPEG_CAPTURE_OPTIONS"]="video_codec;h264_cuvid"
import cv2

ret = cv2.VideoCapture("input.mp4", cv2.CAP_FFMPEG)
while True:
    x, y = ret.read()
    if x:
        continue
    break


    


    but I get these errors when I run my script.

    


    [ERROR:0] global /tmp/pip-req-build-afu9cjzs/opencv/modules/videoio/src/cap_ffmpeg_impl.hpp (1086) open Could not find decoder 'h264_cuvid'
[ERROR:0] global /tmp/pip-req-build-afu9cjzs/opencv/modules/videoio/src/cap_ffmpeg_impl.hpp (1109) open VIDEOIO/FFMPEG: Failed to initialize VideoCapture


    


    My ffmpeg configs, ffmpeg :

    


    ffmpeg version N-102965-gf531a1a4e8 Copyright (c) 2000-2021 the FFmpeg developers
  built with gcc 9 (Ubuntu 9.3.0-17ubuntu1~20.04)
  configuration: --enable-nonfree --enable-cuda --enable-cuvid --enable-nvdec --enable-cuda-nvcc --enable-nvenc --enable-libnpp --enable-shared --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64
  libavutil      57.  0.100 / 57.  0.100
  libavcodec     59.  3.101 / 59.  3.101
  libavformat    59.  4.100 / 59.  4.100
  libavdevice    59.  0.100 / 59.  0.100
  libavfilter     8.  0.103 /  8.  0.103
  libswscale      6.  0.100 /  6.  0.100
  libswresample   4.  0.100 /  4.  0.100
Hyper fast Audio and Video encoder


    


    and ffmpeg -hwaccels :

    


    ffmpeg version N-102965-gf531a1a4e8 Copyright (c) 2000-2021 the FFmpeg developers
  built with gcc 9 (Ubuntu 9.3.0-17ubuntu1~20.04)
  configuration: --enable-nonfree --enable-cuda --enable-cuvid --enable-nvdec --enable-cuda-nvcc --enable-nvenc --enable-libnpp --enable-shared --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64
  libavutil      57.  0.100 / 57.  0.100
  libavcodec     59.  3.101 / 59.  3.101
  libavformat    59.  4.100 / 59.  4.100
  libavdevice    59.  0.100 / 59.  0.100
  libavfilter     8.  0.103 /  8.  0.103
  libswscale      6.  0.100 /  6.  0.100
  libswresample   4.  0.100 /  4.  0.100
Hardware acceleration methods:
cuda


    


    OpenCV version opencv-python==4.5.3.56