
Recherche avancée
Médias (1)
-
GetID3 - Bloc informations de fichiers
9 avril 2013, par
Mis à jour : Mai 2013
Langue : français
Type : Image
Autres articles (69)
-
Support audio et vidéo HTML5
10 avril 2011MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...) -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
De l’upload à la vidéo finale [version standalone]
31 janvier 2010, parLe chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
Upload et récupération d’informations de la vidéo source
Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)
Sur d’autres sites (6866)
-
ffmpeg : add ui64 type to SpecifierOpt
18 novembre 2017, par pkvietffmpeg : add ui64 type to SpecifierOpt
Adds ui64 (uint64_t) as a possible type for SpecifierOpt. This enables
use of uint64_t options with SpecifierOpt such as channel_layout
when expressed as a 64 bit channel mask.Signed-off-by : pkviet <pkv.stream@gmail.com>
Signed-off-by : Michael Niedermayer <michael@niedermayer.cc> -
convert avi to mp4 - centos - propper command
16 novembre 2012, par Rares Danieli need some help, please. Im strugling for a time now, with ffmpeg/mencoder/mp4box.
i need to convert videos from avi to mp4, to maintain same quality, and IF possible, to reduce size.
Im using centos 6.3 64bit
i tried several commands :
ffmpeg -i input.avi -acodec libfaac -b:a 128k -vcodec mpeg4 -b:v 1200k -flags +aic+mv4 output.mp4
with : qscale 1the commands work, but the output file cant be played via httpd, i get (media time unsuported) or the output file is too large.
I need an command to convert from avi to mp4 using h264 and faac.With windows , i have this "HandBrakeCLI.exe" -i "input" -t 1 -c 1 -o "output" -f mp4 —strict-anamorphic -e x264 -q 20 —vfr -a 1 -E faac -B 160 -6 dpl2 -R Auto -D 0 —gain=0 —audio-copy-mask none —audio-fallback ffac3 -x ref=1:weightp=1:subq=2:rc-lookahead=10:trellis=0:8x8dct=0 —verbose=1 And works like a charm. But not on linux
Can you please give me a command to do this ? Also, if its possbile to use 2-3 core of server and 2-3 gb ram so the process would be faster.
Thank you
-
Bit-field badness
30 janvier 2010, par Mans — Compilers, OptimisationConsider the following C code which is based on an real-world situation.
struct bf1_31 unsigned a:1 ; unsigned b:31 ; ;
void func(struct bf1_31 *p, int n, int a)
int i = 0 ;
do
if (p[i].a)
p[i].b += a ;
while (++i < n) ;
How would we best write this in ARM assembler ? This is how I would do it :
func : ldr r3, [r0], #4 tst r3, #1 add r3, r3, r2, lsl #1 strne r3, [r0, #-4] subs r1, r1, #1 bgt func bx lr
The
add
instruction is unconditional to avoid a dependency on the comparison. Unrolling the loop would mask the latency of theldr
instruction as well, but that is outside the scope of this experiment.Now compile this code with
gcc -march=armv5te -O3
and watch in horror :func : push r4 mov ip, #0 mov r4, r2 loop : ldrb r3, [r0] add ip, ip, #1 tst r3, #1 ldrne r3, [r0] andne r2, r3, #1 addne r3, r4, r3, lsr #1 orrne r2, r2, r3, lsl #1 strne r2, [r0] cmp ip, r1 add r0, r0, #4 blt loop pop r4 bx lr
This is nothing short of awful :
- The same value is loaded from memory twice.
- A complicated mask/shift/or operation is used where a simple shifted add would suffice.
- Write-back addressing is not used.
- The loop control counts up and compares instead of counting down.
- Useless
mov
in the prologue ; swapping the roles orr2
andr4
would avoid this. - Using
lr
in place ofr4
would allow the return to be done withpop {pc}
, saving one instruction (ignoring for the moment that no callee-saved registers are needed at all).
Even for this trivial function the gcc-generated code is more than twice the optimal size and slower by approximately the same factor.
The main issue I wanted to illustrate is the poor handling of bit-fields by gcc. When accessing bitfields from memory, gcc issues a separate load for each field even when they are contained in the same aligned memory word. Although each load after the first will most likely hit L1 cache, this is still bad for several reasons :
- Loads have typically two or three cycles result latency compared to one cycle for data processing instructions. Any bit-field can be extracted from a register with two shifts, and on ARM the second of these can generally be achieved using a shifted second operand to a following instruction. The ARMv6T2 instruction set also adds the
SBFX
andUBFX
instructions for extracting any signed or unsigned bit-field in one cycle. - Most CPUs have more data processing units than load/store units. It is thus more likely for an ALU instruction than a load/store to issue without delay on a superscalar processor.
- Redundant memory accesses can trigger early flushing of store buffers rendering these less efficient.
No gcc bashing is complete without a comparison with another compiler, so without further ado, here is the ARM RVCT output (
armcc --cpu 5te -O3
) :func : mov r3, #0 push r4, lr loop : ldr ip, [r0, r3, lsl #2] tst ip, #1 addne ip, ip, r2, lsl #1 strne ip, [r0, r3, lsl #2] add r3, r3, #1 cmp r3, r1 blt loop pop r4, pc
This is much better, the core loop using only one instruction more than my version. The loop control is counting up, but at least this register is reused as offset for the memory accesses. More remarkable is the push/pop of two registers that are never used. I had not expected to see this from RVCT.
Even the best compilers are still no match for a human.