Recherche avancée

Médias (0)

Mot : - Tags -/objet éditorial

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (25)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Submit bugs and patches

    13 avril 2011

    Unfortunately a software is never perfect.
    If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
    If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
    You may also (...)

  • Organiser par catégorie

    17 mai 2013, par

    Dans MédiaSPIP, une rubrique a 2 noms : catégorie et rubrique.
    Les différents documents stockés dans MédiaSPIP peuvent être rangés dans différentes catégories. On peut créer une catégorie en cliquant sur "publier une catégorie" dans le menu publier en haut à droite ( après authentification ). Une catégorie peut être rangée dans une autre catégorie aussi ce qui fait qu’on peut construire une arborescence de catégories.
    Lors de la publication prochaine d’un document, la nouvelle catégorie créée sera proposée (...)

Sur d’autres sites (4436)

  • Google Analytics Privacy Issues : Is It Really That Bad ?

    2 juin 2022, par Erin

    If you find yourself asking : “What’s the deal with Google Analytics privacy ?”, you probably have some second thoughts. 

    Your hunch is right. Google Analytics (GA) is a popular web analytics tool, but it’s far from being perfect when it comes to respecting users’ privacy. 

    This post helps you understand tremendous Google Analytics privacy concerns users, consumers and regulators expressed over the years.

    In this blog, we’ll cover :

    What Does Google Analytics Collect About Users ? 

    To understand Google Analytics privacy issues, you need to know how Google treats web users’ data. 

    By default, Google Analytics collects the following information : 

    • Session statistics — duration, page(s) viewed, etc. 
    • Referring website details — a link you came through or keyword used. 
    • Approximate geolocation — country, city. 
    • Browser and device information — mobile vs desktop, OS usage, etc. 

    Google obtains web analytics data about users via two means : an on-site Google Analytics tracking code and cookies.

    A cookie is a unique identifier (ID) assigned to each user visiting a web property. Each cookie stores two data items : unique user ID and website name. 

    With the help of cookies, web analytics solutions can recognise returning visitors and track their actions across the website(s).

    First-party vs third-party cookies
    • First party cookies are generated by one website and collect user behaviour data from said website only. 
    • Third-party cookies are generated by a third-party website object (for example, an ad) and can track user behaviour data across multiple websites. 

    As it’s easy to imagine, third-party cookies are a goldmine for companies selling online ads. Essentially, they allow ad platforms to continue watching how the user navigates the web after clicking a certain link. 

    Yet, people have little clue as to which data they are sharing and how it is being used. Also, user consent to tracking across websites is only marginally guaranteed by existing Google Analytics controls. 

    Why Third-Party Cookie Data Collection By GA Is Problematic 

    Cookies can transmit personally identifiable information (PII) such as name, log in details, IP address, saved payment method and so on. Some of these details can end up with advertisers without consumers’ direct knowledge or consent.

    Regulatory frameworks such as General Data Protection Regulation (GDPR) in Europe and California Consumer Privacy Act (CCPA) emerged as a response to uncontrolled user behaviour tracking.

    Under regulatory pressure, Big Tech companies had to adapt their data collection process.

    Apple was the first to implement by-default third-party blocking in the Safari browser. Then added a tracking consent mechanism for iPhone users starting from iOS 15.2 and later. 

    Google, too, said it would drop third-party cookie usage after The European Commission and UK’s Competition and Markets Authority (CMA) launched antitrust investigations into its activity. 

    To shake off the data watchdogs, Google released a Privacy Sandbox — a set of progressive tech, operational and compliance changes for ensuring greater consumer privacy. 

    Google’s biggest promise : deprecate third-party cookies usage for all web and mobile products. 

    Originally, Google promised to drop third-party cookies by 2022, but that didn’t happen. Instead, Google delayed cookie tracking depreciation for Chrome until the second half of 2023

    Why did they push back on this despite hefty fines from regulators ?

    Because online ads make Google a lot of money.

    In 2021, Alphabet Inc (parent company of Google), made $256.7 billion in revenue, of which $209.49 billion came from selling advertising. 

    Lax Google Analytics privacy enforcement — and its wide usage by website owners — help Google make those billions from collecting and selling user data. 

    How Google Uses Collected Google Analytics Data for Advertising 

    Over 28 million websites (or roughly 85% of the Internet) have Google Analytics tracking codes installed. 

    Even if one day we get a Google Analytics version without cookies, it still won’t address all the privacy concerns regulators and consumers have. 

    Over the years, Google has accumulated an extensive collection of user data. The company’s engineers used it to build state-of-the-art deep learning models, now employed to build advanced user profiles. 

    Deep learning is the process of training a machine to recognise data patterns. Then this “knowledge” is used to produce highly-accurate predictive insights. The more data you have for model training — the better its future accuracy will be. 

    Google has amassed huge deposits of data from its collection of products — GA, YouTube, Gmail, Google Docs and Google Maps among others. Now they are using this data to build a third-party cookies-less alternative mechanism for modelling people’s preferences, habits, lifestyles, etc. 

    Their latest model is called Google Topics. 

    This comes only after Google’s failed attempt to replace cookie-based training with Federated Learning of Cohorts (FLoC) model. But the solution wasn’t offering enough user transparency and user controls among other issues.

    Google Topics
    Source : Google Blog

    Google Topics promises to limit the granularity of data advertisers get about users. 

    But it’s still a web user surveillance method. With Google Topics, the company will continue collecting user data via Chrome (and likely other Google products) — and share it with advertisers. 

    Because as we said before : Google is in the business of profiting off consumers’ data. 

    Two Major Ways Google Takes Advantage of Customer Data

    Every bit of data Google collects across its ecosystem of products can be used in two ways :

    • For ad targeting and personalisation 
    • To improve Google’s products 

    The latter also helps the former. 

    Advanced Ad Personalisation and Targeting

    GA provides the company with ample data on users’ 

    • Recent and frequent searches 
    • Location history
    • Visited websites
    • Used apps 
    • Videos and ads viewed 
    • Personal data like age or gender 

    The company’s privacy policy explicitly states that :

    Google Analytics Privacy Policy
    Source : Google

    Google also admits to using collected data to “measure the effectiveness of advertising” and “personalise content and ads you see on Google.” 

    But there are no further elaborations on how exactly customers’ data is used — and what you can do to prevent it from being shared with third parties. 

    In some cases, Google also “forgets” to inform users about its in-product tracking.

    Journalists from CNBC and The New York Times independently concluded that Google monitors users’ Gmail activity. In particular, the company scans your inbox for recent purchases, trips, flights and bills notifications. 

    While Google says that this information isn’t sold to advertisers (directly), they still may use the “saved information about your orders in other Google services”. 

    Once again, this means you have little control or knowledge of subsequent data usage. 

    Improving Product Usability 

    Google has many “arms” to collect different data points — from user’s search history to frequently-travelled physical routes. 

    They also reserve the right to use these insights for improving existing products. 

    Here’s what it means : by combining different types of data points obtained from various products, Google can pierce a detailed picture of a person’s life. Even if such user profile data is anonymised, it is still alarmingly accurate. 

    Douglas Schmidt, a computer science researcher at Vanderbilt University, well summarised the matter : 

    “[Google’s] business model is to collect as much data about you as possible and cross-correlate it so they can try to link your online persona with your offline persona. This tracking is just absolutely essential to their business. ‘Surveillance capitalism’ is a perfect phrase for it.”

    Google Data Collection Obsession Is Backed Into Its Business Model 

    OK, but Google offers some privacy controls to users ? Yes. Google only sees and uses the information you voluntarily enter or permit them to access. 

    But as the Washington Post correspondent points out :

    “[Big Tech] companies get to set all the rules, as long as they run those rules by consumers in convoluted terms of service that even those capable of decoding the legalistic language rarely bother to read. Other mechanisms for notice and consent, such as opt-outs and opt-ins, create similar problems. Control for the consumer is mostly an illusion.”

    Google openly claims to be “one of many ad networks that personalise ads based on your activity online”. 

    The wrinkle is that they have more data than all other advertising networks (arguably combined). This helps Google sell high-precision targeting and contextually personalised ads for billions of dollars annually.

    Given that Google has stakes in so many products — it’s really hard to de-Google your business and minimise tracking and data collection from the company.

    They are also creating a monopoly on data collection and ownership. This fact makes regulators concerned. The 2021 antitrust lawsuit from the European Commission says : 

    “The formal investigation will notably examine whether Google is distorting competition by restricting access by third parties to user data for advertising purposes on websites and apps while reserving such data for its own use.”

    In other words : By using consumer data to its unfair advantage, Google allegedly shuts off competition.

    But that’s not the only matter worrying regulators and consumers alike. Over the years, Google also received numerous other lawsuits for breaching people’s privacy, over and over again. 

    Here’s a timeline : 

    Separately, Google has a very complex history with GDPR compliance

    How Google Analytics Contributes to the Web Privacy Problem 

    Google Analytics is the key puzzle piece that supports Google’s data-driven business model. 

    If Google was to release a privacy-focused Google Analytics alternative, it’d lose access to valuable web users’ data and a big portion of digital ad revenues. 

    Remember : Google collects more data than it shares with web analytics users and advertisers. But they keep a lot of it for personal usage — and keep looking for ways to share this intel with advertisers (in a way that keeps regulators off their tail).

    For Google Analytics to become truly ethical and privacy-focused, Google would need to change their entire revenue model — which is something they are unlikely to do.

    Where does this leave Google Analytics users ? 

    In a slippery territory. By proxy, companies using GA are complicit with Google’s shady data collection and usage practice. They become part of the problem.

    In fact, Google Analytics usage opens a business to two types of risks : 

    • Reputational. 77% of global consumers say that transparency around how data is collected and used is important to them when interacting with different brands. That’s why data breaches and data misuse by brands lead to major public outrages on social media and boycotts in some cases. 
    • Legal. EU regulators are on a continuous crusade against Google Analytics 4 (GA4) as it is in breach of GDPR. French and Austrian watchdogs ruled the “service” illegal. Since Google Analytics is not GDPR compliant, it opens any business using it to lawsuits (which is already happening).

    But there’s a way out.

    Choose a Privacy-Friendly Google Analytics Alternative 

    Google Analytics is a popular web analytics service, but not the only one available. You have alternatives such as Matomo. 

    Our guiding principle is : respecting privacy.

    Unlike Google Analytics, we leave data ownership 100% in users’ hands. Matomo lets you implement privacy-centred controls for user data collection.

    Plus, you can self-host Matomo On-Premise or choose Matomo Cloud with data securely stored in the EU and in compliance with GDPR.

    The best part ? You can try our ethical alternative to Google Analytics for free. No credit card required ! Start your free 21-day trial now

  • What is Web Log Analytics and Why You Should Use It

    26 juin 2024, par Erin

    Can’t use JavaScript tracking on your website ? Need a more secure and privacy-friendly way to understand your website visitors ? Web log analytics is your answer. This method pulls data directly from your server logs, offering a secure and privacy-respecting alternative.  

    In this blog, we cover what web log analytics is, how it compares to JavaScript tracking, who it is best suited for, and why it might be the right choice for you. 

    What are server logs ? 

    Before diving in, let’s start with the basics : What are server logs ? Think of your web server as a diary that notes every visit to your website. Each time someone visits, the server records details like : 

    • User agent : Information about the visitor’s browser and operating system. 
    • Timestamp : The exact time the request was made. 
    • Requested URL : The specific page or resource the visitor requested. 

    These “diary entries” are called server logs, and they provide a detailed record of all interactions with your website. 

    Server log example 

    Here’s what a server log looks like : 

    192.XXX.X.X – – [24/Jun/2024:14:32:01 +0000] “GET /index.html HTTP/1.1” 200 1024 “https://www.example.com/referrer.html” “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 

    192.XXX.X.X – – [24/Jun/2024:14:32:02 +0000] “GET /style.css HTTP/1.1” 200 3456 “https://www.example.com/index.html” “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 

    192.XXX.X.X – – [24/Jun/2024:14:32:03 +0000] “GET /script.js HTTP/1.1” 200 7890 “https://www.example.com/index.html” “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 

    192.XXX.X.X – – [24/Jun/2024:14:32:04 +0000] “GET /images/logo.png HTTP/1.1” 200 1234 “https://www.example.com/index.html” “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 

    Breakdown of the log entry 

    Each line in the server log represents a single request made by a visitor to your website. Here’s a detailed breakdown of what each part means : 

    • IP Address : 192.XXX.X.X 
      • This is the IP address of the visitor’s device. 
    • User Identifier : – – 
      • These fields are typically used for user identification and authentication, which are not applicable here, hence the hyphens. 
    • Timestamp : [24/Jun/2024:14:32:01 +0000] 
        • The date and time of the request, including the timezone. 
    • Request Line : “GET /index.html HTTP/1.1” 
      • The request method (GET), the requested resource (/index.html), and the HTTP version (HTTP/1.1). 
    • Response Code : 200 
      • The HTTP status code indicates the result of the request (200 means OK). 
    • Response Size : 1024 
      • The size of the response in bytes. 
    • Referrer :https://www.example.com/referrer.html 
      • The URL of the referring page that led the visitor to the current page. 
    • User Agent : “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 
      • Information about the visitor’s browser and operating system. 

    In the example above, there are multiple log entries for different resources (HTML page, CSS file, JavaScript file, and an image). This shows that when a visitor loads a webpage, multiple requests are made to load all the necessary resources. 

    What is web log analytics ? 

    Web log analytics is one of many methods for tracking visitors to your site.  

    Web log analytics is the process of analysing server log files to track and understand website visitors. Unlike traditional methods that use JavaScript tracking codes embedded in web pages, web log analytics pulls data directly from these server logs. 

    How it works : 

    1. Visitor request : A visitor’s browser requests your website. 
    2. Server logging : The server logs the request details. 
    3. Analysis : These logs are analysed to extract useful information about your visitors and their activities. 

    Web log analytics vs. JavaScript tracking 

    JavaScript tracking 

    JavaScript tracking is the most common method used to track website visitors. It involves embedding a JavaScript code snippet into your web pages. This code collects data on visitor interactions and sends it to a web analytics platform. 

    Web log analytics vs JavaScript tracking

    Differences and benefits :

    Privacy : 

    • Web log analytics : Since it doesn’t require embedding tracking codes, it is considered less intrusive and helps maintain higher privacy standards. 
    • JavaScript tracking : Embeds tracking codes directly on your website, which can be more invasive and raise privacy concerns. 

    Ease of setup : 

    • Web log analytics : No need to modify your website’s code. All you need is access to your server logs. 
    • JavaScript tracking : Requires adding tracking code on your web pages. This is generally an easier setup process.  

    Data collection : 

    • Web log analytics : Contain requests of users with adblockers (ghostery, adblock, adblock plus, privacy badger, etc.) sometimes making it more accurate. However, it may miss certain interactive elements like screen resolution or user events. It may also over-report data.  
    • JavaScript tracking : Can collect a wide range of data, including Custom dimensions, Ecommerce tracking, Heatmaps, Session recordings, Media and Form analytics, etc. 

    Why choose web log analytics ? 

    Enhanced privacy 

    Avoiding embedded tracking codes means there’s no JavaScript running on your visitors’ browsers. This significantly reduces the risk of data leakage and enhances overall privacy. 

    Comprehensive data collection 

    It isn’t affected by ad blockers or browser tracking protections, ensuring you capture more complete and accurate data about your visitors. 

    Historical data analysis 

    You can import and analyse historical log files, giving you insights into long-term visitor behaviour and trends. 

    Simple setup 

    Since it relies on server logs, there’s no need to alter your website’s code. This makes setup straightforward and minimises potential technical issues. 

    Who should use web log analytics ? 

    Web log analytics is particularly suited for businesses that prioritise data privacy and security.

    Organisations that handle sensitive data, such as banks, healthcare providers, and government agencies, can benefit from the enhanced privacy.  

    By avoiding JavaScript tracking, these entities minimise data exposure and comply with strict privacy regulations like Sarbanes Oxley and PCI. 

    Why use Matomo for web log analytics ? 

    Matomo stands out as a top choice for web log analytics because it prioritises privacy and data ownership

    Screenshot example of the Matomo dashboard

    Here’s why : 

    • Complete data control : You own all your data, so you don’t have to worry about third-party access. 
    • IP anonymisation : Matomo anonymises IP addresses to further protect user privacy. 
    • Bot filtering : Automatically excludes bots from your reports, ensuring you get accurate data. 
    • Simple migration : You can easily switch from other tools like AWStats by importing your historical logs into Matomo. 
    • Server log recognition : Recognises most server log formats (Apache, Nginx, IIS, etc.). 

    Start using web log analytics 

    Web log analytics offers a secure, privacy-focused alternative to traditional JavaScript tracking methods. By analysing server logs, you get valuable insights into your website traffic while maintaining high privacy standards.  

    If you’re serious about privacy and want reliable data, give Matomo’s web log analytics a try.  

    Start your 21-day free trial now. No credit card required. 

  • Benefits and Shortcomings of Multi-Touch Attribution

    13 mars 2023, par Erin — Analytics Tips

    Few sales happen instantly. Consumers take their time to discover, evaluate and become convinced to go with your offer. 

    Multi-channel attribution (also known as multi-touch attribution or MTA) helps businesses better understand which marketing tactics impact consumers’ decisions at different stages of their buying journey. Then double down on what’s working to secure more sales. 

    Unlike standard analytics, multi-channel modelling combines data from various channels to determine their cumulative and independent impact on your conversion rates. 

    The main benefit of multi-touch attribution is obvious : See top-performing channels, as well as those involved in assisted conversions. The drawback of multi-touch attribution : It comes with a more complex setup process. 

    If you’re on the fence about getting started with multi-touch attribution, here’s a summary of the main arguments for and against it. 

    What Are the Benefits of Multi-Touch Attribution ?

    Remember an old parable of blind men and an elephant ?

    Each one touched the elephant and drew conclusions about how it might look. The group ended up with different perceptions of the animal and thought the others were lying…until they decided to work together on establishing the truth.

    Multi-channel analytics works in a similar way : It reconciles data from various channels and campaign types into one complete picture. So that you can get aligned on the efficacy of different campaign types and gain some other benefits too. 

    Better Understanding of Customer Journeys 

    On average, it takes 8 interactions with a prospect to generate a conversion. These interactions happen in three stages : 

    • Awareness : You need to introduce your company to the target buyers and pique their interest in your solution (top-of-the-funnel). 
    • Consideration : The next step is to channel this casual interest into deliberate research and evaluation of your offer (middle-of-the-funnel). 
    • Decision : Finally, you need to get the buyer to commit to your offer and close the deal (bottom-of-the-funnel). 

    You can analyse funnels using various attribution models — last-click, fist-click, position-based attribution, etc. Each model, however, will spotlight the different element(s) of your sales funnel. 

    For example, a single-touch attribution model like last-click zooms in on the bottom-of-the-funnel stage. You can evaluate which channels (or on-site elements) sealed the deal for the prospect. For example, a site visitor arrived from an affiliate link and started a free trial. In this case, the affiliate (referral traffic) gets 100% credit for the conversion. 

    This measurement tactic, however, doesn’t show which channels brought the customer to the very bottom of your funnel. For instance, they may have interacted with a social media post, your landing pages or a banner ad before that. 

    Multi-touch attribution modelling takes funnel analysis a notch further. In this case, you map more steps in the customer journey — actions, events, and pages that triggered a visitor’s decision to convert — in your website analytics tool.

    Funnels Report Matomo

    Then, select a multi-touch attribution model, which provides more backward visibility aka allows you to track more than one channel, preceding the conversion. 

    For example, a Position Based attribution model reports back on all interactions a site visitor had between their first visit and conversion. 

    A prospect first lands at your website via search results (Search traffic), which gets a 40% credit in this model. Two days later, the same person discovers a mention of your website on another blog and visits again (Referral traffic). This time, they save the page as a bookmark and revisit it again in two more days (Direct traffic). Each of these channels will get a 10% credit. A week later, the prospect lands again on your site via Twitter (Social) and makes a request for a demo. Social would then receive a 40% credit for this conversion. Last-click would have only credited social media and first-click — search engines. 

    The bottom line : Multi-channel attribution models show how different channels (and marketing tactics) contribute to conversions at different stages of the customer journey. Without it, you get an incomplete picture.

    Improved Budget Allocation 

    Understanding causal relationships between marketing activities and conversion rates can help you optimise your budgets.

    First-click/last-click attribution models emphasise the role of one channel. This can prompt you toward the wrong conclusions. 

    For instance, your Facebook ads campaigns do great according to a first-touch model. So you decide to increase the budget. What you might be missing though is that you could have an even higher conversion rate and revenue if you fix “funnel leaks” — address high drop-off rates during checkout, improve page layout and address other possible reasons for exiting the page.

    Matomo Customisable Goal Funnels
    Funnel reports at Matomo allow you to see how many people proceed to the next conversion stage and investigate why they drop off.

    By knowing when and why people abandon their purchase journey, you can improve your marketing velocity (aka the speed of seeing the campaign results) and your marketing costs (aka the budgets you allocate toward different assets, touchpoints and campaign types). 

    Or as one of the godfathers of marketing technology, Dan McGaw, explained in a webinar :

    “Once you have a multi-touch attribution model, you [can] actually know the return on ad spend on a per-campaign basis. Sometimes, you can get it down to keywords. Sometimes, you can get down to all kinds of other information, but you start to realise, “Oh, this campaign sucks. I should shut this off.” And then really, that’s what it’s about. It’s seeing those campaigns that suck and turning them off and then taking that budget and putting it into the campaigns that are working”.

    More Accurate Measurements 

    The big boon of multi-channel marketing attribution is that you can zoom in on various elements of your funnel and gain granular data on the asset’s performance. 

    In other words : You get more accurate insights into the different elements involved in customer journeys. But for accurate analytics measurements, you must configure accurate tracking. 

    Define your objectives first : How do you want a multi-touch attribution tool to help you ? Multi-channel attribution analysis helps you answer important questions such as :

    • How many touchpoints are involved in the conversions ? 
    • How long does it take for a lead to convert on average ? 
    • When and where do different audience groups convert ? 
    • What is your average win rate for different types of campaigns ?

    Your objectives will dictate which multi-channel modelling approach will work best for your business — as well as the data you’ll need to collect. 

    At the highest level, you need to collect two data points :

    • Conversions : Desired actions from your prospects — a sale, a newsletter subscription, a form submission, etc. Record them as tracked Goals
    • Touchpoints : Specific interactions between your brand and targets — specific page visits, referral traffic from a particular marketing channel, etc. Record them as tracked Events

    Your attribution modelling software will then establish correlation patterns between actions (conversions) and assets (touchpoints), which triggered them. 

    The accuracy of these measurements, however, will depend on the quality of data and the type of attribution modelling used. 

    Data quality stands for your ability to procure accurate, complete and comprehensive information from various touchpoints. For instance, some data won’t be available if the user rejected a cookie consent banner (unless you’re using a privacy-focused web analytics tool like Matomo). 

    Different attribution modelling techniques come with inherent shortcomings too as they don’t accurately represent the average sales cycle length or track visitor-level data, which allows you to understand which customer segments convert best.

    Learn more about selecting the optimal multi-channel attribution model for your business.

    What Are the Limitations of Multi-Touch Attribution ?

    Overall, multi-touch attribution offers a more comprehensive view of the conversion paths. However, each attribution model (except for custom ones) comes with inherent assumptions about the contribution of different channels (e.g,. 25%-25%-25%-25% in linear attribution or 40%-10%-10%-40% in position-based attribution). These conversion credit allocations may not accurately represent the realities of your industry. 

    Also, most attribution models don’t reflect incremental revenue you gain from existing customers, which aren’t converting through analysed channels. For example, account upgrades to a higher tier, triggered via an in-app offer. Or warranty upsell, made via a marketing email. 

    In addition, you should keep in mind several other limitations of multi-touch attribution software.

    Limited Marketing Mix Analysis 

    Multi-touch attribution tools work in conjunction with your website analytics app (as they draw most data from it). Because of that, such models inherit the same visibility into your marketing mix — a combo of tactics you use to influence consumer decisions.

    Multi-touch attribution tools cannot evaluate the impact of :

    • Dark social channels 
    • Word-of-mouth 
    • Offline promotional events
    • TV or out-of-home ad campaigns 

    If you want to incorporate this data into your multi-attribution reporting, you’ll have to procure extra data from other systems — CRM, ad measurement partners, etc, — and create complex custom analytics models for its evaluation.

    Time-Based Constraints 

    Most analytics apps provide a maximum 90-day lookback window for attribution. This can be short for companies with longer sales cycles. 

    Source : Marketing Charts

    Marketing channels can be overlooked or underappreciated when your attribution window is too short. Because of that, you may curtail spending on brand awareness campaigns, which, in turn, will reduce the number of people entering the later stages of your funnel. 

    At the same time, many businesses would also want to track a look-forward window — the revenue you’ll get from one customer over their lifetime. In this case, not all tools may allow you to capture accurate information on repeat conversions — through re-purchases, account tier updates, add-ons, upsells, etc. 

    Again, to get an accurate picture you’ll need to understand how far into the future you should track conversions. Will you only record your first sales as a revenue number or monitor customer lifetime value (CLV) over 3, 6 or 12 months ? 

    The latter is more challenging to do. But CLV data can add another depth of dimension to your modelling accuracy. With Matomo, you set up this type of tracking by using our visitors’ tracking feature. We can help you track select visitors with known identifiers (e.g. name or email address) to discover their visiting patterns over time. 

    Visitor User IDs in Matomo

    Limited Access to Raw Data 

    In web analytics, raw data stands for unprocessed website visitor information, stripped from any filters, segmentation or sampling applied. 

    Data sampling is a practice of analysing data subsets (instead of complete records) to extrapolate findings towards the entire data set. Google Analytics 4 applies data sampling once you hit over 500k sessions at the property level. So instead of accurate, real-life reporting, you receive approximations, generated by machine learning models. Data sampling is one of the main reasons behind Google Analytics’ accuracy issues

    In multi-channel attribution modelling, usage of sampled data creates further inconsistencies between the reports and the actual state of affairs. For instance, if your website generates 5 million page views, GA multi-touch analytical reports are based on the 500K sample size aka only 90% of the collected information. This hardly represents the real effect of all marketing channels and can lead to subpar decision-making. 

    With Matomo, the above is never an issue. We don’t apply data sampling to any websites (no matter the volume of traffic) and generate all the reports, including multi-channel attribution ones, based on 100% real user data. 

    AI Application 

    On the other hand, websites with smaller traffic volumes often have limited sampling datasets for building attribution models. Some tracking data may also be not available because the visitor rejected a cookie banner, for instance. On average, less than 50% of users in Australia, France, Germany, Denmark and the US among other countries always consent to all cookies. 

    To compensate for such scenarios, some multi-touch attribution solutions apply AI algorithms to “fill in the blanks”, which impacts the reporting accuracy. Once again, you get approximate data of what probably happened. However, Matomo is legally exempt from showing a cookie consent banner in most EU markets. Meaning you can collect 100% accurate data to make data-driven decisions.

    Difficult Technical Implementation 

    Ever since attribution modelling got traction in digital marketing, more and more tools started to emerge.

    Most web analytics apps include multi-touch attribution reports. Then there are standalone multi-channel attribution platforms, offering extra features for conversion rate optimization, offline channel tracking, data-driven custom modelling, etc. 

    Most advanced solutions aren’t available out of the box. Instead, you have to install several applications, configure integrations with requested data sources, and then use the provided interfaces to code together custom data models. Such solutions are great if you have a technical marketer or a data science team. But a steep learning curve and high setup costs make them less attractive for smaller teams. 

    Conclusion 

    Multi-touch attribution modelling lifts the curtain in more steps, involved in various customer journeys. By understanding which touchpoints contribute to conversions, you can better plan your campaign types and budget allocations. 

    That said, to benefit from multi-touch attribution modelling, marketers also need to do the preliminary work : Determine the key goals, set up event and conversion tracking, and then — select the optimal attribution model type and tool. 

    Matomo combines simplicity with sophistication. We provide marketers with familiar, intuitive interfaces for setting up conversion tracking across the funnel. Then generate attribution reports, based on 100% accurate data (without any sampling or “guesstimation” applied). You can also get access to raw analytics data to create custom attribution models or plug it into another tool ! 

    Start using accurate, easy-to-use multi-channel attribution with Matomo. Start your free 21-day trial now. No credit card requried.