Recherche avancée

Médias (29)

Mot : - Tags -/Musique

Autres articles (97)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

  • Librairies et binaires spécifiques au traitement vidéo et sonore

    31 janvier 2010, par

    Les logiciels et librairies suivantes sont utilisées par SPIPmotion d’une manière ou d’une autre.
    Binaires obligatoires FFMpeg : encodeur principal, permet de transcoder presque tous les types de fichiers vidéo et sonores dans les formats lisibles sur Internet. CF ce tutoriel pour son installation ; Oggz-tools : outils d’inspection de fichiers ogg ; Mediainfo : récupération d’informations depuis la plupart des formats vidéos et sonores ;
    Binaires complémentaires et facultatifs flvtool2 : (...)

Sur d’autres sites (11442)

  • three ways to achieve an H264 file

    18 mars 2016, par Kindermann

    here I have three ways to get an H264 file, like all forensic scientists, I am very curious about the differences between them :

    1.

    ffmpeg -i video.mp4 video.h264

    2.

    ffmpeg -i video.mp4 -vcodec copy -an -f h264 video.h264

    3. Using the example "demuxing_decoding.c" provided on the ffmpeg official website :
    http://ffmpeg.org/doxygen/trunk/demuxing_decoding_8c-example.html

    Obviously, the first one does the transformation, and the second one does the demuxing. They render different H264 files which however have similar file sizes(in my case, it’s about say 24 MB). Suprisingly, the third one, which is also supposed to do the demuxing job, renders an H264 file with 8.4 GB ! Why ?

    What I wondered is really, how the interiors of these three methods work ?(The third one is already in source code, therefore it’s quite easy to have an insight) What about the first two commands ? What APIs are called when executing these two commands and how those APIs are called(namely, in what kind of sequences they are called) and things like that.
    One thing that is also important to me is, i have no idea how I can trace the execution routines of ffmpeg command lines. I want to see what’s going on behind ffmpeg commands in source code version. Is it possible ?

    I appreciate any comment.

  • Process GIF using FFmpeg libraries - can't find parser at av_parser_init

    24 novembre 2018, par natario

    I am playing with ffmpeg libs, namely libswscale and libavcodec for now. My goal is resize GIF files. From my ridiculous understanding, I think I need to

    • decode the GIF and get an AVFrame
    • process the frame with libswscale
    • encode again into GIF

    But I am stuck at step 1. Based on official sample at https://github.com/FFmpeg/FFmpeg/blob/master/doc/examples/decode_video.c , I need to get a parser :

    codec = avcodec_find_decoder(AV_CODEC_ID_GIF);
    parser = av_parser_init(codec->id);

    But no parser is found. I am not touching parser in my configure call, so I take all :

    Enabled parsers:
    aac                       cavsvideo                 dvbsub                    h263                      mpegvideo                 sipr                      xma
    aac_latm                  cook                      dvd_nav                   h264                      opus                      tak
    ac3                       dca                       dvdsub                    hevc                      png                       vc1
    adx                       dirac                     flac                      mjpeg                     pnm                       vorbis
    av1                       dnxhd                     g729                      mlp                       rv30                      vp3
    avs2                      dpx                       gsm                       mpeg4video                rv40                      vp8
    bmp                       dvaudio                   h261                      mpegaudio                 sbc                       vp9

    What am I doing wrong ? If this is the wrong approach, what is the correct one ?

  • libavfi/dnn : add LibTorch as one of DNN backend

    15 mars 2024, par Wenbin Chen
    libavfi/dnn : add LibTorch as one of DNN backend
    

    PyTorch is an open source machine learning framework that accelerates
    the path from research prototyping to production deployment. Official
    website : https://pytorch.org/. We call the C++ library of PyTorch as
    LibTorch, the same below.

    To build FFmpeg with LibTorch, please take following steps as
    reference :
    1. download LibTorch C++ library in
    https://pytorch.org/get-started/locally/,
    please select C++/Java for language, and other options as your need.
    Please download cxx11 ABI version :
    (libtorch-cxx11-abi-shared-with-deps-*.zip).
    2. unzip the file to your own dir, with command
    unzip libtorch-shared-with-deps-latest.zip -d your_dir
    3. export libtorch_root/libtorch/include and
    libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
    export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
    4. config FFmpeg with ../configure —enable-libtorch \
    —extra-cflag=-I/libtorch_root/libtorch/include \
    —extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include \
    —extra-ldflags=-L/libtorch_root/libtorch/lib/
    5. make

    To run FFmpeg DNN inference with LibTorch backend :
    ./ffmpeg -i input.jpg -vf \
    dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg

    The LibTorch_model.pt can be generated by Python with torch.jit.script()
    api. https://pytorch.org/tutorials/advanced/cpp_export.html. This is
    pytorch official guide about how to convert and load torchscript model.
    Please note, torch.jit.trace() is not recommanded, since it does
    not support ambiguous input size.

    Signed-off-by : Ting Fu <ting.fu@intel.com>
    Signed-off-by : Wenbin Chen <wenbin.chen@intel.com>
    Reviewed-by : Guo Yejun <yejun.guo@intel.com>

    • [DH] configure
    • [DH] libavfilter/dnn/Makefile
    • [DH] libavfilter/dnn/dnn_backend_torch.cpp
    • [DH] libavfilter/dnn/dnn_interface.c
    • [DH] libavfilter/dnn_filter_common.c
    • [DH] libavfilter/dnn_interface.h
    • [DH] libavfilter/vf_dnn_processing.c