
Recherche avancée
Médias (1)
-
The Great Big Beautiful Tomorrow
28 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Texte
Autres articles (72)
-
Les tâches Cron régulières de la ferme
1er décembre 2010, parLa gestion de la ferme passe par l’exécution à intervalle régulier de plusieurs tâches répétitives dites Cron.
Le super Cron (gestion_mutu_super_cron)
Cette tâche, planifiée chaque minute, a pour simple effet d’appeler le Cron de l’ensemble des instances de la mutualisation régulièrement. Couplée avec un Cron système sur le site central de la mutualisation, cela permet de simplement générer des visites régulières sur les différents sites et éviter que les tâches des sites peu visités soient trop (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...)
Sur d’autres sites (9365)
-
Extract image of every frame of a video using react-native-ffmpeg
1er octobre 2020, par EdGI have looked all over the internet to get a way to extract image of everyframe of a video using react-native-ffmpeg. I am making a mobile app and I want to show all per frame images on the video timeline. I want to do this natively on mobile so that I can utilise hardware power of mobile. That is the reason I am looking for react-native-ffmpeg kind of library. Am I in the right direction ? This npmjs.com/package/react-native-ffmpeg is what I am trying to use. I need to know the command to do the job.


-
Google AppEngine flex as a transcoder [closed]
6 septembre 2021, par jACKSituation :


- 

- A Nodejs/Express application running on appengine flex.
- Using FFmpeg to cut videos, and merge different types of videos. 1080p 30fps videos, merged video duration usually around 8 hours.
- Need for a massive amout of processing power for those edits.
- The express server needs to be reachable 24/7 & flex is incredibly expensive if run on a 24/7 basis.










Goal :


- 

- To have a cost efficient ffmpeg transcoder on a private enviroment =>
- Flex instance as a maximum spec, but as its idle reduce the price significantly.






Or is this a situation where a redesign is imminent ? eg. Compute Engine


Tried approach


- 

- B8 Standard instance => Since the payload is pretty big, its causing the B8 instance to crash.




Thanks.


-
Concatenate list of streams with ffmpeg
16 novembre 2019, par oioioiI’d like to write python code, automatically rearranging the scenes of a video. How do I use
ffmpeg-python
to concatenate a list of n streams/scenes ? What is the easiest way to merge those scenes with their audio counterpart ?
Unfortunately, I couldn’t figure out how to do it properly.The status quo :
import os
import scenedetect
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.frame_timecode import FrameTimecode
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector
import ffmpeg
STATS_FILE_PATH = 'stats.csv'
def main():
for root, dirs, files in os.walk('material'):
for file in files:
file = os.path.join(root, file)
print(file)
video_manager = VideoManager([file])
stats_manager = StatsManager()
scene_manager = SceneManager(stats_manager)
scene_manager.add_detector(ContentDetector())
base_timecode = video_manager.get_base_timecode()
end_timecode = video_manager.get_duration()
start_time = base_timecode
end_time = base_timecode + 100.0
#end_time = end_timecode[2]
video_manager.set_duration(start_time=start_time, end_time=end_time)
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list(base_timecode)
print('List of scenes obtained:')
for i, scene in enumerate(scene_list):
print(' Scene %2d: Start %s / Frame %d, End %s / Frame %d' % (
i+1,
scene[0].get_timecode(), scene[0].get_frames(),
scene[1].get_timecode(), scene[1].get_frames(),))
start = scene[0].get_frames()
end = scene[1].get_frames()
print(start)
print(end)
(
ffmpeg
.input(file)
.trim(start_frame=start, end_frame=end)
.setpts ('PTS-STARTPTS')
.output('scene %d.mp4' % (i+1))
.run()
)
if stats_manager.is_save_required():
with open(STATS_FILE_PATH, 'w') as stats_file:
stats_manager.save_to_csv(stats_file, base_timecode)
if __name__ == "__main__":
main()