
Recherche avancée
Médias (2)
-
Rennes Emotion Map 2010-11
19 octobre 2011, par
Mis à jour : Juillet 2013
Langue : français
Type : Texte
-
Carte de Schillerkiez
13 mai 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
Autres articles (65)
-
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
Support audio et vidéo HTML5
10 avril 2011MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...) -
Ajouter notes et légendes aux images
7 février 2011, parPour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
Modification lors de l’ajout d’un média
Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)
Sur d’autres sites (9422)
-
lavu/x86 : add FFT assembly
10 avril 2021, par Lynnelavu/x86 : add FFT assembly
This commit adds a pure x86 assembly SIMD version of the FFT in libavutil/tx.
The design of this pure assembly FFT is pretty unconventional.On the lowest level, instead of splitting the complex numbers into
real and imaginary parts, we keep complex numbers together but split
them in terms of parity. This saves a number of shuffles in each transform,
but more importantly, it splits each transform into two independent
paths, which we process using separate registers in parallel.
This allows us to keep all units saturated and lets us use all available
registers to avoid dependencies.
Moreover, it allows us to double the granularity of our per-load permutation,
skipping many expensive lookups and allowing us to use just 4 loads per register,
rather than 8, or in case FMA3 (and by extension, AVX2), use the vgatherdpd
instruction, which is at least as fast as 4 separate loads on old hardware,
and quite a bit faster on modern CPUs).Higher up, we go for a bottom-up construction of large transforms, foregoing
the traditional per-transform call-return recursion chains. Instead, we always
start at the bottom-most basis transform (in this case, a 32-point transform),
and continue constructing larger and larger transforms until we return to the
top-most transform.
This way, we only touch the stack 3 times per a complete target transform :
once for the 1/2 length transform and two times for the 1/4 length transform.The combination algorithm we use is a standard Split-Radix algorithm,
as used in our C code. Although a version with less operations exists
(Steven G. Johnson and Matteo Frigo's "A modified split-radix FFT with fewer
arithmetic operations", IEEE Trans. Signal Process. 55 (1), 111–119 (2007),
which is the one FFTW uses), it only has 2% less operations and requires at least 4x
the binary code (due to it needing 4 different paths to do a single transform).
That version also has other issues which prevent it from being implemented
with SIMD code as efficiently, which makes it lose the marginal gains it offered,
and cannot be performed bottom-up, requiring many recursive call-return chains,
whose overhead adds up.We go through a lot of effort to minimize load/stores by keeping as much in
registers in between construcring transforms. This saves us around 32 cycles,
on paper, but in reality a lot more due to load/store aliasing (a load from a
memory location cannot be issued while there's a store pending, and there are
only so many (2 for Zen 3) load/store units in a CPU).
Also, we interleave coefficients during the last stage to save on a store+load
per register.Each of the smallest, basis transforms (4, 8 and 16-point in our case)
has been extremely optimized. Our 8-point transform is barely 20 instructions
in total, beating our old implementation 8-point transform by 1 instruction.
Our 2x8-point transform is 23 instructions, beating our old implementation by
6 instruction and needing 50% less cycles. Our 16-point transform's combination
code takes slightly more instructions than our old implementation, but makes up
for it by requiring a lot less arithmetic operations.Overall, the transform was optimized for the timings of Zen 3, which at the
time of writing has the most IPC from all documented CPUs. Shuffles were
preferred over arithmetic operations due to their 1/0.5 latency/throughput.On average, this code is 30% faster than our old libavcodec implementation.
It's able to trade blows with the previously-untouchable FFTW on small transforms,
and due to its tiny size and better prediction, outdoes FFTW on larger transforms
by 11% on the largest currently supported size. -
Merge commit ’26ec75aec3576daea691dee53a78ec67c0dc4040’
19 janvier 2016, par Hendrik LeppkesMerge commit ’26ec75aec3576daea691dee53a78ec67c0dc4040’
* commit ’26ec75aec3576daea691dee53a78ec67c0dc4040’ :
checkasm : Check register clobbering on armMerged-by : Hendrik Leppkes <h.leppkes@gmail.com>
-
FFmpeg avutil.lib unresolved external symbol
2 août 2022, par Serei'm trying to use FFmpeg with visual sudio 2022 .NET 6 through an MSVC project.
I followed this tutorial : https://www.youtube.com/watch?v=qMNr1Su-nR8&ab_channel=HakanSoyalp.
I mean I have configureg Include (.h) file, library (.lib) files and dynamic (.dll) file copied into bin folder.
If I call for example the avformat_alloc_context() method inside the avformat.lib all work rightly, if I call for example av_file_map(...) inside the avutil.lib the compiler give me an error :
LNK2019 unresolved external symbol "int __cdecl av_file_map ...
But the avutil.lib is linked !!!
The same happen if I call other methods inside avutil.lib module.


Thanks for help...


Code :


extern "C"
{
 #include <libavformat></libavformat>avformat.h>
 #include <libavutil></libavutil>file.h> // av_file_map
}

int ConvertJPEGtoNALs(int argc, char* argv[])
{
 AVFormatContext* fmt_ctx = NULL;
 AVIOContext* avio_ctx = NULL;
 uint8_t* buffer = NULL, * avio_ctx_buffer = NULL;
 size_t buffer_size, avio_ctx_buffer_size = 4096;
 char* input_filename = NULL;
 int ret = 0;
 struct buffer_data bd = { 0 };
 if (argc != 2) {
 fprintf(stderr, "usage: %s input_file\n"
 "API example program to show how to read from a custom buffer "
 "accessed through AVIOContext.\n", argv[0]);
 return 1;
 }
 input_filename = argv[1];
 /* register codecs and formats and other lavf/lavc components*/
 //av_register_all(); //!deprecated
 /* slurp file content into buffer */
 ret = av_file_map(input_filename, &buffer, &buffer_size, 0, NULL);
 /* fill opaque structure used by the AVIOContext read callback */
 bd.ptr = buffer;
 bd.size = buffer_size; ???
 if (!(fmt_ctx = avformat_alloc_context())) {
 ret = AVERROR(ENOMEM);
 goto end;
 }
 //... to be continue ...
}