Recherche avancée

Médias (2)

Mot : - Tags -/doc2img

Autres articles (37)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 est la première version de MediaSPIP stable.
    Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Mise à disposition des fichiers

    14 avril 2011, par

    Par défaut, lors de son initialisation, MediaSPIP ne permet pas aux visiteurs de télécharger les fichiers qu’ils soient originaux ou le résultat de leur transformation ou encodage. Il permet uniquement de les visualiser.
    Cependant, il est possible et facile d’autoriser les visiteurs à avoir accès à ces documents et ce sous différentes formes.
    Tout cela se passe dans la page de configuration du squelette. Il vous faut aller dans l’espace d’administration du canal, et choisir dans la navigation (...)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

Sur d’autres sites (6099)

  • configure : update copyright year

    1er janvier, par Lynne
    configure : update copyright year
    

    On 01/01/2025 19:05, Peter Ross wrote :
    > FFmpeg turns 25 this year.

    • [DH] configure
  • Introducing the BigQuery & Data Warehouse Export feature

    30 janvier, par Matomo Core Team

    Matomo is built on a simple truth : your data belongs to you, and you should have complete control over it. That’s why we’re excited to launch our new BigQuery & Data Warehouse Export feature for Matomo Cloud, giving you even more ways to work with your analytics data. 

    Until now, getting raw data from Matomo Cloud required APIs and custom scripts, or waiting for engineering help.  

    Our new BigQuery & Data Warehouse Export feature removes those barriers. You can now access your raw, unaggregated data and schedule regular exports straight to your data warehouse. 

    The feature works with all major data warehouses including (but not limited to) : 

    • Google BigQuery 
    • Amazon Redshift 
    • Snowflake 
    • Azure Synapse Analytics 
    • Apache Hive 
    • Teradata 

    You can schedule exports, combine your Matomo data with other data sources in your data warehouse, and easily query data with SQL-like queries. 

    Direct raw data access for greater data portability 

    Waiting for engineering support can delay your work. Managing API connections and writing scripts can be time-consuming. This keeps you from focusing on what you do best—analysing data. 

    BigQuery create-table-menu

    With the BigQuery & Data Warehouse Export feature, you get direct access to your raw Matomo data without the technical setup. So, you can spend more time analysing data and finding insights that matter. 

    Bringing your data together 

    Answering business questions often requires data from multiple sources. A single customer interaction might span your CRM, web analytics, sales systems, and more. Piecing this data together manually is time-consuming—what starts as a seemingly simple question from stakeholders can turn into hours of work collecting and comparing data across different tools. 

    This feature lets you combine your Matomo data with data from other business systems in your data warehouse. Instead of switching between tools or manually comparing spreadsheets, you can analyse all your data in one place to better understand how customers interact with your business. 

    Easy, custom analysis with SQL-like queries 

    Standard, pre-built reports often don’t address the specific, detailed questions that analysts need to answer.  

    When you use the BigQuery & Data Warehouse Export feature, you can use SQL-like queries in your data warehouse to do detailed, customised analysis. This flexibility allows you to explore your data in depth and uncover specific insights that aren’t possible with pre-built reports. 

    Here is an example of how you might use SQL-like query to compare the behaviours of paying vs. non-paying users : 

    				
                                            <xmp>SELECT  

    custom_dimension_value AS user_type, -- Assuming 'user_type' is stored in a custom dimension

    COUNT(*) AS total_visits,  

    AVG(visit_total_time) AS avg_duration,

    SUM(conversion.revenue) AS total_spent  

    FROM  

    `your_project.your_dataset.matomo_log_visit` AS visit

    LEFT JOIN  

    `your_project.your_dataset.matomo_log_conversion` AS conversion  

    ON  

    visit.idvisit = conversion.idvisit  

    GROUP BY  

    custom_dimension_value; </xmp>
                                   

    This query helps you compare metrics such as the number of visits, average session duration, and total amount spent between paying and non-paying users. It provides a full view of behavioural differences between these groups. 

    Advanced data manipulation and visualisation 

    When you need to create detailed reports or dive deep into data analysis, working within the constraints of a fixed user interface (UI) can limit your ability to draw insights. 

    Exporting your Matomo data to a data warehouse like BigQuery provides greater flexibility for in-depth manipulation and advanced visualisations, enabling you to uncover deeper insights and tailor your reports more effectively. 

    Getting started 

    To set up data warehouse exports in your Matomo : 

    1. Go to System Admin (cog icon in the top right corner) 
    2. Select ‘Export’ from the left-hand menu 
    3. Choose ‘BigQuery & Data Warehouse’ 

    You’ll find detailed instructions in our data warehouse exports guide 

    Please note, enabling this feature will cost an additional 10% of your current subscription. You can view the exact cost by following the steps above. 

    New to Matomo ? Start your 21-day free trial now (no credit card required), or request a demo. 

  • ffmpeg - Concat multi mp4 files with audio file not working

    29 mars 2017, par Thanh Dao

    I follow this thread to concat multi mp4 files with audio file.
    But its not success. Have a lots error notifications had been displayed. I dont know how to fix it.
    Below is my command :

    "ffmpeg" -f concat -safe 0 \
    -i /path/to/text.txt \
    -i /path/to/audio.mp3 -vsync vfr -vf scale="640:640" -pix_fmt yuv420p \
    /path/to/output.mp4 2>&amp;1

    The detail contents of text.txt

    file '/path/to/file1.mp4'
    file '/path/to/file2.mp4'
    file '/path/to/file3.mp4'
    file '/path/to/file4.mp4'
    file '/path/to/file5.mp4'
    file '/path/to/file6.mp4'
    file '/path/to/file7.mp4'
    file '/path/to/file8.mp4'
    file '/path/to/file9.mp4'
    file '/path/to/file10.mp4'
    file '/path/to/file11.mp4'
    file '/path/to/file12.mp4'
    file '/path/to/file13.mp4'
    file '/path/to/file14.mp4'
    file '/path/to/file15.mp4'
    file '/path/to/file16.mp4'
    file '/path/to/file17.mp4'
    file '/path/to/file18.mp4'

    And some lines of output errors :

    [concat @ 0x357e620] DTS 192000 &lt; 229888 out of order
    [h264 @ 0x36920e0] top block unavailable for requested intra mode -1
    [h264 @ 0x36920e0] error while decoding MB 32 0
    [h264 @ 0x36920e0] concealing 2025 DC, 2025 AC, 2025 MV errors in I frame
    [h264 @ 0x36b7a80] concealing 1449 DC, 1449 AC, 1449 MV errors in P frame
    [h264 @ 0x36ff440] corrupted macroblock 26 1 (total_coeff=-1)
    [h264 @ 0x36ff440] error while decoding MB 26 1
    [h264 @ 0x36ff440] concealing 2003 DC, 2003 AC, 2003 MV errors in P frame
    [h264 @ 0x371af40] concealing 1456 DC, 1456 AC, 1456 MV errors in P frame
    [h264 @ 0x3736a40] ref 5 overflow
    [h264 @ 0x3736a40] error while decoding MB 1 1
    [h264 @ 0x3736a40] concealing 2025 DC, 2025 AC, 2025 MV errors in P frame
    [h264 @ 0x3752520] concealing 1449 DC, 1449 AC, 1449 MV errors in P frame
    [h264 @ 0x376dfa0] P sub_mb_type 8 out of range at 2 1
    [h264 @ 0x376dfa0] error while decoding MB 2 1
    [h264 @ 0x376dfa0] concealing 2025 DC, 2025 AC, 2025 MV errors in P frame
    [h264 @ 0x37a55a0] ref 6 overflow
    [h264 @ 0x37a55a0] error while decoding MB 3 1
    [h264 @ 0x37a55a0] concealing 2025 DC, 2025 AC, 2025 MV errors in P frame
    [h264 @ 0x3789aa0] concealing 1449 DC, 1449 AC, 1449 MV errors in P frame
    [h264 @ 0x36b7a80] ref 5 overflow
    [h264 @ 0x36b7a80] error while decoding MB 4 1
    [h264 @ 0x36b7a80] concealing 2025 DC, 2025 AC, 2025 MV errors in P frame
    [h264 @ 0x36920e0] concealing 1449 DC, 1449 AC, 1449 MV errors in P frame