Recherche avancée

Médias (91)

Autres articles (41)

  • La sauvegarde automatique de canaux SPIP

    1er avril 2010, par

    Dans le cadre de la mise en place d’une plateforme ouverte, il est important pour les hébergeurs de pouvoir disposer de sauvegardes assez régulières pour parer à tout problème éventuel.
    Pour réaliser cette tâche on se base sur deux plugins SPIP : Saveauto qui permet une sauvegarde régulière de la base de donnée sous la forme d’un dump mysql (utilisable dans phpmyadmin) mes_fichiers_2 qui permet de réaliser une archive au format zip des données importantes du site (les documents, les éléments (...)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 est la première version de MediaSPIP stable.
    Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Mise à disposition des fichiers

    14 avril 2011, par

    Par défaut, lors de son initialisation, MediaSPIP ne permet pas aux visiteurs de télécharger les fichiers qu’ils soient originaux ou le résultat de leur transformation ou encodage. Il permet uniquement de les visualiser.
    Cependant, il est possible et facile d’autoriser les visiteurs à avoir accès à ces documents et ce sous différentes formes.
    Tout cela se passe dans la page de configuration du squelette. Il vous faut aller dans l’espace d’administration du canal, et choisir dans la navigation (...)

Sur d’autres sites (4745)

  • Make better marketing decisions with attribution modeling

    19 décembre 2017, par InnoCraft — Community, Plugins

    Do you suspect some traffic sources are not getting the rewards they deserve ? Do you want to know how much credit each of your marketing channel actually gets ?

    When you look at which referrers contribute the most to your goal conversions or purchases, Piwik shows you only the referrer of the last visit. However, in reality, a visitor often visits a website multiple times from different referrers before they convert a goal. Giving all credit to the referrer of the last visit ignores all other referrers that contributed to a conversion as well.

    You can now push your marketing analysis to the next level with attribution modeling and finally discover the true value of all your marketing channels. As a result, you will be able to shift your marketing efforts and spending accordingly to maximize your success and stop wasting resources. In marketing, studying this data is called attribution modeling.

    Get the true value of your referrers

    Attribution is a premium feature that you can easily purchase from the Piwik marketplace.

    Once installed, you will be able to :

    • identify valuable referrers that you did not see before
    • invest in potential new partners
    • attribute a new level of conversion
    • make this work very easily by filling just a couple of form information

    Identify valuable referrers that you did not see before

    You probably have hundreds or even thousands of different sources listed within the referrer reports. We also guess that you have the feeling that it is always the same referrers which are credited of conversions.
    Guess what, those data are probably biased or at least are not telling you the whole story.
    Why ? Because by default, Piwik only attributes all credit to the last referrer.

    It is likely that many non credited sources played a role in the conversion process as well as people often visit your website several times before converting and they may come from different referrers.

    This is exactly where attribution modeling comes into play. With attribution modeling, you can decide which touchpoint you want to study. For example, you can choose to give credit to all the referrers a single visitor came from each time the user visits your website, and not only look at the last one. Without this feature, chances are, that you have spent too much money and / or efforts on the wrong referrer channels in the past because many referrers that contributed to conversions were ignored. Based on the insights you get by applying different attribution models, you can make better decisions on where to shift your marketing spending and efforts.

    Invest in potential new partners

    Once you apply different attribution models, you will find out that you need to consider a new list of referrers which you before either over- or under-estimated in terms of how much they contributed to your conversions. You probably did not identify those sources before because Piwik shows only the last referrer before a conversion. But you can now also look at what these newly discovered referrers are saying about your company, looking for any advertising programs they may offer, getting in contact with the owner of the website, and more.

    Apply up to 6 different attribution models

    By default, Piwik is attributing the conversion to the last referrer only. With attribution modeling you can analyze 6 different models :

    • Last Interaction : the conversion is attributed to the last referrer, even if it is a direct access.
    • Last Non-Direct : the conversion is attributed to the last referrer, but not in the case of a direct access.
    • First Interaction : the conversion is attributed to the first referrer which brought you the visit.
    • Linear : whatever the number of referrers which brought you the conversion, they will all get the same value.
    • Position Based : first and last referrer will be attributed 40% each the conversion value, the remaining 60% is divided between the rest of the referrers.
    • Time Decay : this attribution model means that the closer to the date of the conversion is, the more your last referrers will get credit.

    Those attribution models will enable you to analyze all your referrers deeply and increase your conversions.

    Let’s look at an example where we are comparing two models : “last interaction” and “first interaction”. Our goal is to identify whether some referrers that we are currently considering as less important, are finally playing a serious role in the total amount of conversions :

    Comparing Last Interaction model to First Interaction model

    Here it is interesting to observe that the website www.hongkiat.com is bringing almost 90% conversion more with the first interaction model rather than the last one.

    As a result we can look at this website and take the following actions :

    • have a look at the message on this website
    • look at opportunities to change the message
    • look at opportunities to display extra marketing messages
    • get in contact with the owner to identify any other communication opportunities

    The Multi Channel Attribution report

    Attribution modeling in Piwik does not require you to add any tracking code. The only thing you need is to install the plugin and let the magic happen.
    Simple as pie is the word you should keep in mind for this feature. Once installed, you will find the report within the goal section, just above the goals you created :

    The Multi Attribution menu

    There you can select the attribution model you would like to apply or compare.

    Attribution modeling is not just about playing with a new report. It is above all an opportunity to increase the number of conversions by identifying referrers that you may have not recognized as valuable in the past. To grow your business, it is crucial to identify the most (and least) successful channels correctly so you can spend your time and money wisely.

  • ffmpeg failed to load audio file

    14 avril 2024, par Vaishnav Ghenge
    Failed to load audio: ffmpeg version 5.1.4-0+deb12u1 Copyright (c) Failed to load audio: ffmpeg version 5.1.4-0+deb12u1 Copyright (c) 2000-2023 the FFmpeg developers
  built with gcc 12 (Debian 12.2.0-14)
  configuration: --prefix=/usr --extra-version=0+deb12u1 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --arch=amd64 --enable-gpl --disable-stripping --enable-gnutls --enable-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libcodec2 --enable-libdav1d --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libglslang --enable-libgme --enable-libgsm --enable-libjack --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librabbitmq --enable-librist --enable-librubberband --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libsrt --enable-libssh --enable-libsvtav1 --enable-libtheora --enable-libtwolame --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzimg --enable-libzmq --enable-libzvbi --enable-lv2 --enable-omx --enable-openal --enable-opencl --enable-opengl --enable-sdl2 --disable-sndio --enable-libjxl --enable-pocketsphinx --enable-librsvg --enable-libmfx --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libx264 --enable-libplacebo --enable-librav1e --enable-shared
  libavutil      57. 28.100 / 57. 28.100
  libavcodec     59. 37.100 / 59. 37.100
  libavformat    59. 27.100 / 59. 27.100
  libavdevice    59.  7.100 / 59.  7.100
  libavfilter     8. 44.100 /  8. 44.100
  libswscale      6.  7.100 /  6.  7.100
  libswresample   4.  7.100 /  4.  7.100
  libpostproc    56.  6.100 / 56.  6.100
/tmp/tmpjlchcpdm.wav: Invalid data found when processing input


    


    backend :

    


    
@app.route("/transcribe", methods=["POST"])
def transcribe():
    # Check if audio file is present in the request
    if 'audio_file' not in request.files:
        return jsonify({"error": "No file part"}), 400
    
    audio_file = request.files.get('audio_file')

    # Check if audio_file is sent in files
    if not audio_file:
        return jsonify({"error": "`audio_file` is missing in request.files"}), 400

    # Check if the file is present
    if audio_file.filename == '':
        return jsonify({"error": "No selected file"}), 400

    # Save the file with a unique name
    filename = secure_filename(audio_file.filename)
    unique_filename = os.path.join("uploads", str(uuid.uuid4()) + '_' + filename)
    # audio_file.save(unique_filename)
    
    # Read the contents of the audio file
    contents = audio_file.read()

    max_file_size = 500 * 1024 * 1024
    if len(contents) > max_file_size:
        return jsonify({"error": "File is too large"}), 400

    # Check if the file extension suggests it's a WAV file
    if not filename.lower().endswith('.wav'):
        # Delete the file if it's not a WAV file
        os.remove(unique_filename)
        return jsonify({"error": "Only WAV files are supported"}), 400

    print(f"\033[92m{filename}\033[0m")

    # Call Celery task asynchronously
    result = transcribe_audio.delay(contents)

    return jsonify({
        "task_id": result.id,
        "status": "pending"
    })


@celery_app.task
def transcribe_audio(contents):
    # Transcribe the audio
    try:
        # Create a temporary file to save the audio data
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
            temp_path = temp_audio.name
            temp_audio.write(contents)

            print(f"\033[92mFile temporary path: {temp_path}\033[0m")
            transcribe_start_time = time.time()

            # Transcribe the audio
            transcription = transcribe_with_whisper(temp_path)
            
            transcribe_end_time = time.time()
            print(f"\033[92mTranscripted text: {transcription}\033[0m")

            return transcription, transcribe_end_time - transcribe_start_time

    except Exception as e:
        print(f"\033[92mError: {e}\033[0m")
        return str(e)


    


    frontend :

    


        useEffect(() => {
        const init = () => {
            navigator.mediaDevices.getUserMedia({audio: true})
                .then((audioStream) => {
                    const recorder = new MediaRecorder(audioStream);

                    recorder.ondataavailable = e => {
                        if (e.data.size > 0) {
                            setChunks(prevChunks => [...prevChunks, e.data]);
                        }
                    };

                    recorder.onerror = (e) => {
                        console.log("error: ", e);
                    }

                    recorder.onstart = () => {
                        console.log("started");
                    }

                    recorder.start();

                    setStream(audioStream);
                    setRecorder(recorder);
                });
        }

        init();

        return () => {
            if (recorder && recorder.state === 'recording') {
                recorder.stop();
            }

            if (stream) {
                stream.getTracks().forEach(track => track.stop());
            }
        }
    }, []);

    useEffect(() => {
        // Send chunks of audio data to the backend at regular intervals
        const intervalId = setInterval(() => {
            if (recorder && recorder.state === 'recording') {
                recorder.requestData(); // Trigger data available event
            }
        }, 8000); // Adjust the interval as needed


        return () => {
            if (intervalId) {
                console.log("Interval cleared");
                clearInterval(intervalId);
            }
        };
    }, [recorder]);

    useEffect(() => {
        const processAudio = async () => {
            if (chunks.length > 0) {
                // Send the latest chunk to the server for transcription
                const latestChunk = chunks[chunks.length - 1];

                const audioBlob = new Blob([latestChunk]);
                convertBlobToAudioFile(audioBlob);
            }
        };

        void processAudio();
    }, [chunks]);

    const convertBlobToAudioFile = useCallback((blob: Blob) => {
        // Convert Blob to audio file (e.g., WAV)
        // This conversion may require using a third-party library or service
        // For example, you can use the MediaRecorder API to record audio in WAV format directly
        // Alternatively, you can use a library like recorderjs to perform the conversion
        // Here's a simplified example using recorderjs:

        const reader = new FileReader();
        reader.onload = () => {
            const audioBuffer = reader.result; // ArrayBuffer containing audio data

            // Send audioBuffer to Flask server or perform further processing
            sendAudioToFlask(audioBuffer as ArrayBuffer);
        };

        reader.readAsArrayBuffer(blob);
    }, []);

    const sendAudioToFlask = useCallback((audioBuffer: ArrayBuffer) => {
        const formData = new FormData();
        formData.append('audio_file', new Blob([audioBuffer]), `speech_audio.wav`);

        console.log(formData.get("audio_file"));

        fetch('http://34.87.75.138:8000/transcribe', {
            method: 'POST',
            body: formData
        })
            .then(response => response.json())
            .then((data: { task_id: string, status: string }) => {
                pendingTaskIdsRef.current.push(data.task_id);
            })
            .catch(error => {
                console.error('Error sending audio to Flask server:', error);
            });
    }, []);


    


    I was trying to pass the audio from frontend to whisper model which is in flask app

    


  • Make better marketing decisions with attribution modeling

    19 décembre 2017, par InnoCraft

    Do you suspect some traffic sources are not getting the rewards they deserve ? Do you want to know how much credit each of your marketing channel actually gets ?

    When you look at which referrers contribute the most to your goal conversions or purchases, Matomo (Piwik) shows you only the referrer of the last visit. However, in reality, a visitor often visits a website multiple times from different referrers before they convert a goal. Giving all credit to the referrer of the last visit ignores all other referrers that contributed to a conversion as well.

    You can now push your marketing analysis to the next level with attribution modeling and finally discover the true value of all your marketing channels. As a result, you will be able to shift your marketing efforts and spending accordingly to maximize your success and stop wasting resources. In marketing, studying this data is called attribution modeling.

    Get the true value of your referrers

    Attribution is a premium feature that you can easily purchase from the Matomo (Piwik) marketplace.

    Once installed, you will be able to :

    • identify valuable referrers that you did not see before
    • invest in potential new partners
    • attribute a new level of conversion
    • make this work very easily by filling just a couple of form information

    Identify valuable referrers that you did not see before

    You probably have hundreds or even thousands of different sources listed within the referrer reports. We also guess that you have the feeling that it is always the same referrers which are credited of conversions.
    Guess what, those data are probably biased or at least are not telling you the whole story.
    Why ? Because by default, Matomo (Piwik) only attributes all credit to the last referrer.

    It is likely that many non credited sources played a role in the conversion process as well as people often visit your website several times before converting and they may come from different referrers.

    This is exactly where attribution modeling comes into play. With attribution modeling, you can decide which touchpoint you want to study. For example, you can choose to give credit to all the referrers a single visitor came from each time the user visits your website, and not only look at the last one. Without this feature, chances are, that you have spent too much money and / or efforts on the wrong referrer channels in the past because many referrers that contributed to conversions were ignored. Based on the insights you get by applying different attribution models, you can make better decisions on where to shift your marketing spending and efforts.

    Invest in potential new partners

    Once you apply different attribution models, you will find out that you need to consider a new list of referrers which you before either over- or under-estimated in terms of how much they contributed to your conversions. You probably did not identify those sources before because Matomo (Piwik) shows only the last referrer before a conversion. But you can now also look at what these newly discovered referrers are saying about your company, looking for any advertising programs they may offer, getting in contact with the owner of the website, and more.

    Apply up to 6 different attribution models

    By default, Matomo (Piwik) is attributing the conversion to the last referrer only. With attribution modeling you can analyze 6 different models :

    • Last Interaction : the conversion is attributed to the last referrer, even if it is a direct access.
    • Last Non-Direct : the conversion is attributed to the last referrer, but not in the case of a direct access.
    • First Interaction : the conversion is attributed to the first referrer which brought you the visit.
    • Linear : whatever the number of referrers which brought you the conversion, they will all get the same value.
    • Position Based : first and last referrer will be attributed 40% each the conversion value, the remaining 60% is divided between the rest of the referrers.
    • Time Decay : this attribution model means that the closer to the date of the conversion is, the more your last referrers will get credit.

    Those attribution models will enable you to analyze all your referrers deeply and increase your conversions.

    Let’s look at an example where we are comparing two models : “last interaction” and “first interaction”. Our goal is to identify whether some referrers that we are currently considering as less important, are finally playing a serious role in the total amount of conversions :

    Comparing Last Interaction model to First Interaction model

    Here it is interesting to observe that the website www.hongkiat.com is bringing almost 90% conversion more with the first interaction model rather than the last one.

    As a result we can look at this website and take the following actions :

    • have a look at the message on this website
    • look at opportunities to change the message
    • look at opportunities to display extra marketing messages
    • get in contact with the owner to identify any other communication opportunities

    The Multi Channel Attribution report

    Attribution modeling in Matomo (Piwik) does not require you to add any tracking code. The only thing you need is to install the plugin and let the magic happen.
    Simple as pie is the word you should keep in mind for this feature. Once installed, you will find the report within the goal section, just above the goals you created :

    The Multi Attribution menu

    There you can select the attribution model you would like to apply or compare.

    Attribution modeling is not just about playing with a new report. It is above all an opportunity to increase the number of conversions by identifying referrers that you may have not recognized as valuable in the past. To grow your business, it is crucial to identify the most (and least) successful channels correctly so you can spend your time and money wisely.

    The post Make better marketing decisions with attribution modeling appeared first on Analytics Platform - Matomo.