Recherche avancée

Médias (0)

Mot : - Tags -/xmlrpc

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (61)

  • Les tâches Cron régulières de la ferme

    1er décembre 2010, par

    La gestion de la ferme passe par l’exécution à intervalle régulier de plusieurs tâches répétitives dites Cron.
    Le super Cron (gestion_mutu_super_cron)
    Cette tâche, planifiée chaque minute, a pour simple effet d’appeler le Cron de l’ensemble des instances de la mutualisation régulièrement. Couplée avec un Cron système sur le site central de la mutualisation, cela permet de simplement générer des visites régulières sur les différents sites et éviter que les tâches des sites peu visités soient trop (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Automated installation script of MediaSPIP

    25 avril 2011, par

    To overcome the difficulties mainly due to the installation of server side software dependencies, an "all-in-one" installation script written in bash was created to facilitate this step on a server with a compatible Linux distribution.
    You must have access to your server via SSH and a root account to use it, which will install the dependencies. Contact your provider if you do not have that.
    The documentation of the use of this installation script is available here.
    The code of this (...)

Sur d’autres sites (5966)

  • What is Behavioural Segmentation and Why is it Important ?

    28 septembre 2023, par Erin — Analytics Tips

    Amidst the dynamic landscape of web analytics, understanding customers has grown increasingly vital for businesses to thrive. While traditional demographic-focused strategies possess merit, they need to uncover the nuanced intricacies of individual online behaviours and preferences. As customer expectations evolve in the digital realm, enterprises must recalibrate their approaches to remain relevant and cultivate enduring digital relationships.

    In this context, the surge of technology and advanced data analysis ushers in a marketing revolution : behavioural segmentation. Businesses can unearth invaluable insights by meticulously scrutinising user actions, preferences and online interactions. These insights lay the foundation for precisely honed, high-performing, personalised campaigns. The era dominated by blanket, catch-all marketing strategies is yielding to an era of surgical precision and tailored engagement. 

    While the insights from user behaviours empower businesses to optimise customer experiences, it’s essential to strike a delicate balance between personalisation and respecting user privacy. Ethical use of behavioural data ensures that the power of segmentation is wielded responsibly and in compliance, safeguarding user trust while enabling businesses to thrive in the digital age.

    What is behavioural segmentation ?

    Behavioural segmentation is a crucial concept in web analytics and marketing. It involves categorising individuals or groups of users based on their online behaviour, actions and interactions with a website. This segmentation method focuses on understanding how users engage with a website, their preferences and their responses to various stimuli. Behavioural segmentation classifies users into distinct segments based on their online activities, such as the pages they visit, the products they view, the actions they take and the time they spend on a site.

    Behavioural segmentation plays a pivotal role in web analytics for several reasons :

    1. Enhanced personalisation :

    Understanding user behaviour enables businesses to personalise online experiences. This aids with delivering tailored content and recommendations to boost conversion, customer loyalty and customer satisfaction.

    2. Improved user experience :

    Behavioural segmentation optimises user interfaces (UI) and navigation by identifying user paths and pain points, enhancing the level of engagement and retention.

    3. Targeted marketing :

    Behavioural segmentation enhances marketing efficiency by tailoring campaigns to user behaviour. This increases the likelihood of interest in specific products or services.

    4. Conversion rate optimisation :

    Analysing behavioural data reveals factors influencing user decisions, enabling website optimisation for a streamlined purchasing process and higher conversion rates.

    5. Data-driven decision-making :

    Behavioural segmentation empowers data-driven decisions. It identifies trends, behavioural patterns and emerging opportunities, facilitating adaptation to changing user preferences and market dynamics.

    6. Ethical considerations :

    Behavioural segmentation provides valuable insights but raises ethical concerns. User data collection and use must prioritise transparency, privacy and responsible handling to protect individuals’ rights.

    The significance of ethical behavioural segmentation will be explored more deeply in a later section, where we will delve into the ethical considerations and best practices for collecting, storing and utilising behavioural data in web analytics. It’s essential to strike a balance between harnessing the power of behavioural segmentation for business benefits and safeguarding user privacy and data rights in the digital age.

    A woman surrounded by doors shaped like heads of different

    Different types of behavioural segments with examples

    1. Visit-based segments : These segments hinge on users’ visit patterns. Analyse visit patterns, compare first-time visitors to returning ones, or compare users landing on specific pages to those landing on others.
      • Example : The real estate website Zillow can analyse how first-time visitors and returning users behave differently. By understanding these patterns, Zillow can customise its website for each group. For example, they can highlight featured listings and provide navigation tips for first-time visitors while offering personalised recommendations and saved search options for returning users. This could enhance user satisfaction and boost the chances of conversion.
    2. Interaction-based segments : Segments can be created based on user interactions like special events or goals completed on the site.
      • Example : Airbnb might use this to understand if users who successfully book accommodations exhibit different behaviours than those who don’t. This insight could guide refinements in the booking process for improved conversion rates.
    3. Campaign-based segments : Beyond tracking visit numbers, delve into usage differences of visitors from specific sources or ad campaigns for deeper insights.
      • Example : Nike might analyse user purchase behaviour from various traffic sources (referral websites, organic, direct, social media and ads). This informs marketing segmentation adjustments, focusing on high-performance channels. It also customises the website experience for different traffic sources, optimising content, promotions and navigation. This data-driven approach could boost user experiences and maximise marketing impact for improved brand engagement and sales conversions.
    4. Ecommerce segments : Separate users based on purchases, even examining the frequency of visits linked to specific products. Segment heavy users versus light users. This helps uncover diverse customer types and browsing behaviours.
      • Example : Amazon could create segments to differentiate between visitors who made purchases and those who didn’t. This segmentation could reveal distinct usage patterns and preferences, aiding Amazon in tailoring its recommendations and product offerings.
    5. Demographic segments : Build segments based on browser language or geographic location, for instance, to comprehend how user attributes influence site interactions.
      • Example : Netflix can create user segments based on demographic factors like geographic location to gain insight into how a visitor’s location can influence content preferences and viewing behaviour. This approach could allow for a more personalised experience.
    6. Technographic segments : Segment users by devices or browsers, revealing variations in site experience and potential platform-specific issues or user attitudes.
      • Example : Google could create segments based on users’ devices (e.g., mobile, desktop) to identify potential issues in rendering its search results. This information could be used to guide Google in providing consistent experiences regardless of device.
    A group of consumers split into different segments based on their behaviour

    The importance of ethical behavioural segmentation

    Respecting user privacy and data protection is crucial. Matomo offers features that align with ethical segmentation practices. These include :

    • Anonymization : Matomo allows for data anonymization, safeguarding individual identities while providing valuable insights.
    • GDPR compliance : Matomo is GDPR compliant, ensuring that user data is handled following European data protection regulations.
    • Data retention and deletion : Matomo enables businesses to set data retention policies and delete user data when it’s no longer needed, reducing the risk of data misuse.
    • Secured data handling : Matomo employs robust security measures to protect user data, reducing the risk of data breaches.

    Real-world examples of ethical behavioural segmentation :

    1. Content publishing : A leading news website could utilise data anonymization tools to ethically monitor user engagement. This approach allows them to optimise content delivery based on reader preferences while ensuring the anonymity and privacy of their target audience.
    2. Non-profit organisations : A charity organisation could embrace granular user control features. This could be used to empower its donors to manage their data preferences, building trust and loyalty among supporters by giving them control over their personal information.
    Person in a suit holding a red funnel that has data flowing through it into a file

    Examples of effective behavioural segmentation

    Companies are constantly using behavioural insights to engage their audiences effectively. In this section, we’ll delve into real-world examples showcasing how top companies use behavioural segmentation to enhance their marketing efforts.

    A woman standing in front of a pie chart pointing to the top right-hand section of customers in that segment
    1. Coca-Cola’s behavioural insights for marketing strategy : Coca-Cola employs behavioural segmentation to evaluate its advertising campaigns. Through analysing user engagement across TV commercials, social media promotions and influencer partnerships, Coca-Cola’s marketing team can discover that video ads shared by influencers generate the highest ROI and web traffic.

      This insight guides the reallocation of resources, leading to increased sales and a more effective advertising strategy.

    2. eBay’s custom conversion approach : eBay excels in conversion optimisation through behavioural segmentation. When users abandon carts, eBay’s dynamic system sends personalised email reminders featuring abandoned items and related recommendations tailored to user interests and past purchase decisions.

      This strategy revives sales, elevates conversion rates and sparks engagement. eBay’s adeptness in leveraging behavioural insights transforms user experience, steering a customer journey toward conversion.

    3. Sephora’s data-driven conversion enhancement : Data analysts can use Sephora’s behavioural segmentation strategy to fuel revenue growth through meticulous data analysis. By identifying a dedicated subset of loyal customers who exhibit a consistent preference for premium skincare products, data analysts enable Sephora to customise loyalty programs.

      These personalised rewards programs provide exclusive discounts and early access to luxury skincare releases, resulting in heightened customer engagement and loyalty. The data-driven precision of this approach directly contributes to amplified revenue from this specific customer segment.

    Examples of the do’s and don’ts of behavioural segmentation 

    Happy woman surrounded by icons of things and activities she enjoys

    Behavioural segmentation is a powerful marketing and data analysis tool, but its success hinges on ethical and responsible practices. In this section, we will explore real-world examples of the do’s and don’ts of behavioural segmentation, highlighting companies that have excelled in their approach and those that have faced challenges due to lapses in ethical considerations.

    Do’s of behavioural segmentation :

    • Personalised messaging :
      • Example : Spotify
        • Spotify’s success lies in its ability to use behavioural data to curate personalised playlists and user recommendations, enhancing its music streaming experience.
    • Transparency :
      • Example : Basecamp
        • Basecamp’s transparency in sharing how user data is used fosters trust. They openly communicate data practices, ensuring users are informed and comfortable.
    • Anonymization
      • Example : Matomo’s anonymization features
        • Matomo employs anonymization features to protect user identities while providing valuable insights, setting a standard for responsible data handling.
    • Purpose limitation :
      • Example : Proton Mail
        • Proton Mail strictly limits the use of user data to email-related purposes, showcasing the importance of purpose-driven data practices.
    • Dynamic content delivery : 
      • Example : LinkedIn
        • LinkedIn uses behavioural segmentation to dynamically deliver job recommendations, showcasing the potential for relevant content delivery.
    • Data security :
      • Example : Apple
        • Apple’s stringent data security measures protect user information, setting a high bar for safeguarding sensitive data.
    • Adherence to regulatory compliance : 
      • Example : Matomo’s regulatory compliance features
        • Matomo’s regulatory compliance features ensure that businesses using the platform adhere to data protection regulations, further promoting responsible data usage.

    Don’ts of behavioural segmentation :

    • Ignoring changing regulations
      • Example : Equifax
        • Equifax faced major repercussions for neglecting evolving regulations, resulting in a data breach that exposed the sensitive information of millions.
    • Sensitive attributes
      • Example : Twitter
        • Twitter faced criticism for allowing advertisers to target users based on sensitive attributes, sparking concerns about user privacy and data ethics.
    • Data sharing without consent
      • Example : Meta & Cambridge Analytica
        • The Cambridge Analytica scandal involving Meta (formerly Facebook) revealed the consequences of sharing user data without clear consent, leading to a breach of trust.
    • Lack of control
      • Example : Uber
        • Uber faced backlash for its poor data security practices and a lack of control over user data, resulting in a data breach and compromised user information.
    • Don’t be creepy with invasive personalisation
      • Example : Offer Moment
        • Offer Moment’s overly invasive personalisation tactics crossed ethical boundaries, unsettling users and eroding trust.

    These examples are valuable lessons, emphasising the importance of ethical and responsible behavioural segmentation practices to maintain user trust and regulatory compliance in an increasingly data-driven world.

    Continue the conversation

    Diving into customer behaviours, preferences and interactions empowers businesses to forge meaningful connections with their target audience through targeted marketing segmentation strategies. This approach drives growth and fosters exceptional customer experiences, as evident from the various common examples spanning diverse industries.

    In the realm of ethical behavioural segmentation and regulatory compliance, Matomo is a trusted partner. Committed to safeguarding user privacy and data integrity, our advanced web analytics solution empowers your business to harness the power of behavioral segmentation, all while upholding the highest standards of compliance with stringent privacy regulations.

    To gain deeper insight into your visitors and execute impactful marketing campaigns, explore how Matomo can elevate your efforts. Try Matomo free for 21-days, no credit card required. 

  • Overcoming Fintech and Finserv’s Biggest Data Analytics Challenges

    13 septembre 2024, par Daniel Crough — Banking and Financial Services, Marketing, Security

    Data powers innovation in financial technology (fintech), from personalized banking services to advanced fraud detection systems. Industry leaders recognize the value of strong security measures and customer privacy. A recent survey highlights this focus, with 72% of finance Chief Risk Officers identifying cybersecurity as their primary concern.

    Beyond cybersecurity, fintech and financial services (finserv) companies are bogged down with massive amounts of data spread throughout disconnected systems. Between this, a complex regulatory landscape and an increasingly tech-savvy and sceptical consumer base, fintech and finserv companies have a lot on their plates.

    How can marketing teams get the information they need while staying focused on compliance and providing customer value ? 

    This article will examine strategies to address common challenges in the finserv and fintech industries. We’ll focus on using appropriate tools, following effective data management practices, and learning from traditional banks’ approaches to similar issues.

    What are the biggest fintech data analytics challenges, and how do they intersect with traditional banking ?

    Recent years have been tough for the fintech industry, especially after the pandemic. This period has brought new hurdles in data analysis and made existing ones more complex. As the market stabilises, both fintech and finserve companies must tackle these evolving data issues.

    Let’s examine some of the most significant data analytics challenges facing the fintech industry, starting with an issue that’s prevalent across the financial sector :

    1. Battling data silos

    In a recent survey by InterSystems, 54% of financial institution leaders said data silos are their biggest barrier to innovation, while 62% said removing silos is their priority data strategy for the next year.

    a graphic highlighting fintech concerns about siloed data

    Data silos segregate data repositories across departments, products and other divisions. This is a major issue in traditional banking and something fintech companies should avoid inheriting at all costs.

    Siloed data makes it harder for decision-makers to view business performance with 360-degree clarity. It’s also expensive to maintain and operationalise and can evolve into privacy and data compliance issues if left unchecked.

    To avoid or remove data silos, develop a data governance framework and centralise your data repositories. Next, simplify your analytics stack into as few integrated tools as possible because complex tech stacks are one of the leading causes of data silos.

    Use an analytics system like Matomo that incorporates web analytics, marketing attribution and CRO testing into one toolkit.

    A screenshot of Matomo web analytics

    Matomo’s support plans help you implement a data system to meet the unique needs of your business and avoid issues like data silos. We also offer data warehouse exporting as a feature to bring all of your web analytics, customer data, support data, etc., into one centralised location.

    Try Matomo for free today, or contact our sales team to discuss support plans.

    2. Compliance with laws and regulations

    A survey by Alloy reveals that 93% of fintech companies find it difficult to meet compliance regulations. The cost of staying compliant tops their list of worries (23%), outranking even the financial hit from fraud (21%) – and this in a year marked by cyber threats.

    a bar chart shows the top concerns of fintech regulation compliance

    Data privacy laws are constantly changing, and the landscape varies across global regions, making adherence even more challenging for fintechs and traditional banks operating in multiple markets. 

    In the US market, companies grapple with regulations at both federal and state levels. Here are some of the state-level legislation coming into effect for 2024-2026 :

    Other countries are also ramping up regional regulations. For instance, Canada has Quebec’s Act Respecting the Protection of Personal Information in the Private Sector and British Columbia’s Personal Information Protection Act (BC PIPA).

    Ignorance of country- or region-specific laws will not stop companies from suffering the consequences of violating them.

    The only answer is to invest in adherence and manage business growth accordingly. Ultimately, compliance is more affordable than non-compliance – not only in terms of the potential fines but also the potential risks to reputation, consumer trust and customer loyalty.

    This is an expensive lesson that fintech and traditional financial companies have had to learn together. GDPR regulators hit CaixaBank S.A, one of Spain’s largest banks, with multiple multi-million Euro fines, and Klarna Bank AB, a popular Swedish fintech company, for €720,000.

    To avoid similar fates, companies should :

    1. Build solid data systems
    2. Hire compliance experts
    3. Train their teams thoroughly
    4. Choose data analytics tools carefully

    Remember, even popular tools like Google Analytics aren’t automatically safe. Find out how Matomo helps you gather useful insights while sticking to rules like GDPR.

    3. Protecting against data security threats

    Cyber threats are increasing in volume and sophistication, with the financial sector becoming the most breached in 2023.

    a bar chart showing the percentage of data breaches per industry from 2021 to 2023
<p>

    The cybersecurity risks will only worsen, with WEF estimating annual cybercrime expenses of up to USD $10.5 trillion globally by 2025, up from USD $3 trillion in 2015.

    While technology brings new security solutions, it also amplifies existing risks and creates new ones. A 2024 McKinsey report warns that the risk of data breaches will continue to increase as the financial industry increasingly relies on third-party data tools and cloud computing services unless they simultaneously improve their security posture.

    The reality is that adopting a third-party data system without taking the proper precautions means adopting its security vulnerabilities.

    In 2023, the MOVEit data breach affected companies worldwide, including financial institutions using its file transfer system. One hack created a global data crisis, potentially affecting the customer data of every company using this one software product.

    The McKinsey report emphasises choosing tools wisely. Why ? Because when customer data is compromised, it’s your company that takes the heat, not the tool provider. As the report states :

    “Companies need reliable, insightful metrics and reporting (such as security compliance, risk metrics and vulnerability tracking) to prove to regulators the health of their security capabilities and to manage those capabilities.”

    Don’t put user or customer data in the hands of companies you can’t trust. Work with providers that care about security as much as you do. With Matomo, you own all of your data, ensuring it’s never used for unknown purposes.

    A screenshot of Matomo visitor reporting

    4. Protecting users’ privacy

    With security threats increasing, fintech companies and traditional banks must prioritise user privacy protection. Users are also increasingly aware of privacy threats and ready to walk away from companies that lose their trust.

    Cisco’s 2023 Data Privacy Benchmark Study reveals some eye-opening statistics :

    • 94% of companies said their customers wouldn’t buy from them if their data wasn’t protected, and 
    • 95% see privacy as a business necessity, not just a legal requirement.

    Modern financial companies must balance data collection and management with increasing privacy demands. This may sound contradictory for companies reliant on dated practices like third-party cookies, but they need to learn to thrive in a cookieless web as customers move to banks and service providers that have strong data ethics.

    This privacy protection journey starts with implementing web analytics ethically from the very first session.

    A graphic showing the four key elements of ethical web analytics: 100% data ownership, respecting user privacy, regulatory compliance and Data transparency

    The most important elements of ethically-sound web analytics in fintech are :

    1. 100% data ownership : Make sure your data isn’t used in other ways by the tools that collect it.
    2. Respecting user privacy : Only collect the data you absolutely need to do your job and avoid personally identifiable information.
    3. Regulatory compliance : Stick with solutions built for compliance to stay out of legal trouble.
    4. Data transparency : Know how your tools use your data and let your customers know how you use it.

    Read our guide to ethical web analytics for more information.

    5. Comparing customer trust across industries 

    While fintech companies are making waves in the financial world, they’re still playing catch-up when it comes to earning customer trust. According to RFI Global, fintech has a consumer trust score of 5.8/10 in 2024, while traditional banking scores 7.6/10.

    a comparison of consumer trust in fintech vs traditional finance

    This trust gap isn’t just about perception – it’s rooted in real issues :

    • Security breaches are making headlines more often.
    • Privacy regulations like GDPR are making consumers more aware of their rights.
    • Some fintech companies are struggling to handle fraud effectively.

    According to the UK’s Payment Systems Regulator, digital banking brands Monzo and Starling had some of the highest fraudulent activity rates in 2022. Yet, Monzo only reimbursed 6% of customers who reported suspicious transactions, compared to 70% for NatWest and 91% for Nationwide.

    So, what can fintech firms do to close this trust gap ?

    • Start with privacy-centric analytics from day one. This shows customers you value their privacy from the get-go.
    • Build and maintain a long-term reputation free of data leaks and privacy issues. One major breach can undo years of trust-building.
    • Learn from traditional banks when it comes to handling issues like fraudulent transactions, identity theft, and data breaches. Prompt, customer-friendly resolutions go a long way.
    • Remember : cutting-edge financial technology doesn’t make up for poor customer care. If your digital bank won’t refund customers who’ve fallen victim to credit card fraud, they’ll likely switch to a traditional bank that will.

    The fintech sector has made strides in innovation, but there’s still work to do in establishing trustworthiness. By focusing on robust security, transparent practices, and excellent customer service, fintech companies can bridge the trust gap and compete more effectively with traditional banks.

    6. Collecting quality data

    Adhering to data privacy regulations, protecting user data and implementing ethical analytics raises another challenge. How can companies do all of these things and still collect reliable, quality data ?

    Google’s answer is using predictive models, but this replaces real data with calculations and guesswork. The worst part is that Google Analytics doesn’t even let you use all of the data you collect in the first place. Instead, it uses something called data sampling once you pass certain thresholds.

    In practice, this means that Google Analytics uses a limited set of your data to calculate reports. We’ve discussed GA4 data sampling at length before, but there are two key problems for companies here :

    1. A sample size that’s too small won’t give you a full representation of your data.
    2. The more visitors that come to your site, the less accurate your reports will become.

    For high-growth companies, data sampling simply can’t keep up. Financial marketers widely recognise the shortcomings of big tech analytics providers. In fact, 80% of them say they’re concerned about data bias from major providers like Google and Meta affecting valuable insights.

    This is precisely why CRO:NYX Digital approached us after discovering Google Analytics wasn’t providing accurate campaign data. We set up an analytics system to suit the company’s needs and tested it alongside Google Analytics for multiple campaigns. In one instance, Google Analytics failed to register 6,837 users in a single day, approximately 9.8% of the total tracked by Matomo.

    In another instance, Google Analytics only tracked 600 visitors over 24 hours, while Matomo recorded nearly 71,000 visitors – an 11,700% discrepancy.

    a data visualisation showing the discrepancy in Matomo's reporting vs Google Analytics

    Financial companies need a more reliable, privacy-centric alternative to Google Analytics that captures quality data without putting users at potential risk. This is why we built Matomo and why our customers love having total control and visibility of their data.

    Unlock the full power of fintech data analytics with Matomo

    Fintech companies face many data-related challenges, so compliant web analytics shouldn’t be one of them. 

    With Matomo, you get :

    • An all-in-one solution that handles traditional web analytics, behavioural analytics and more with strong integrations to minimise the likelihood of data siloing
    • Full compliance with GDPR, CCPA, PIPL and more
    • Complete ownership of your data to minimise cybersecurity risks caused by negligent third parties
    • An abundance of ways to protect customer privacy, like IP address anonymisation and respect for DoNotTrack settings
    • The ability to import data from Google Analytics and distance yourself from big tech
    • High-quality data that doesn’t rely on sampling
    • A tool built with financial analytics in mind

    Don’t let big tech companies limit the power of your data with sketchy privacy policies and counterintuitive systems like data sampling. 

    Start your Matomo free trial or request a demo to unlock the full power of fintech data analytics without putting your customers’ personal information at unnecessary risk.

  • Cohort Analysis 101 : How-To, Examples & Top Tools

    13 novembre 2023, par Erin — Analytics Tips

    Imagine that a farmer is trying to figure out why certain hens are laying large brown eggs and others are laying average-sized white eggs.

    The farmer decides to group the hens into cohorts based on what kind of eggs they lay to make it easier to detect patterns in their day-to-day lives. After careful observation and analysis, she discovered that the hens laying big brown eggs ate more than the roost’s other hens.

    With this cohort analysis, the farmer deduced that a hen’s body weight directly corresponds to egg size. She can now develop a strategy to increase the body weight of her hens to sell more large brown eggs, which are very popular at the weekly farmers’ market.

    Cohort analysis has a myriad of applications in the world of web analytics. Like our farmer, you can use it to better understand user behaviour and reap the benefits of your efforts. This article will discuss the best practices for conducting an effective cohort analysis and compare the top cohort analysis tools for 2024. 

    What is cohort analysis ?

    By definition, cohort analysis refers to a technique where users are grouped based on shared characteristics or behaviours and then examined over a specified period.

    Think of it as a marketing superpower, enabling you to comprehend user behaviours, craft personalised campaigns and allocate resources wisely, ultimately resulting in improved performance and better ROI.

    Why does cohort analysis matter ?

    In web analytics, a cohort is a group of users who share a certain behaviour or characteristic. The goal of cohort analysis is to uncover patterns and compare the performance and behaviour of different cohorts over time.

    An example of a cohort is a group of users who made their first purchase during the holidays. By analysing this cohort, you could learn more about their behaviour and buying patterns. You may discover that this cohort is more likely to buy specific product categories as holiday gifts — you can then tailor future holiday marketing campaigns to include these categories. 

    Types of cohort analysis

    There are a few different types of notable cohorts : 

    1. Time-based cohorts are groups of users categorised by a specific time. The example of the farmer we went over at the beginning of this section is a great example of a time-based cohort.
    2. Acquisition cohorts are users acquired during a specific time frame, event or marketing channel. Analysing these cohorts can help you determine the value of different acquisition methods. 
    3. Behavioural cohorts consist of users who show similar patterns of behaviour. Examples include frequent purchases with your mobile app or digital content engagement. 
    4. Demographic cohorts share common demographic characteristics like age, gender, education level and income. 
    5. Churn cohorts are buyers who have cancelled a subscription/stopped using your service within a specific time frame. Analysing churn cohorts can help you understand why customers leave.
    6. Geographic cohorts are pretty self-explanatory — you can use them to tailor your marketing efforts to specific regions. 
    7. Customer journey cohorts are based on the buyer lifecycle — from acquisition to adoption to retention. 
    8. Product usage cohorts are buyers who use your product/service specifically (think basic users, power users or occasional users). 

    Best practices for conducting a cohort analysis 

    So, you’ve decided you want to understand your user base better but don’t know how to go about it. Perhaps you want to reduce churn and create a more engaging user experience. In this section, we’ll walk you through the dos and don’ts of conducting an effective cohort analysis. Remember that you should tailor your cohort analysis strategy for organisation-specific goals.

    A line graph depicting product usage cohort data with a blue line for new users and a green line for power users.

    1. Preparing for cohort analysis : 

      • First, define specific goals you want your cohort analysis to achieve. Examples include improving conversion rates or reducing churn.
      • Choosing the right time frame will help you compare short-term vs. long-term data trends. 

    2. Creating effective cohorts : 

      • Define your segmentation criteria — anything from demographics to location, purchase history or user engagement level. Narrowing in on your specific segments will make your cohort analysis more precise. 
      • It’s important to find a balance between cohort size and similarity. If your cohort is too small and diverse, you won’t be able to find specific behavioural patterns.

    3. Performing cohort analysis :

        • Study retention rates across cohorts to identify patterns in user behaviour and engagement over time. Pay special attention to cohorts with high retention or churn rates. 
        • Analysing cohorts can reveal interesting behavioural insights — how do specific cohorts interact with your website ? Do they have certain preferences ? Why ? 

    4. Visualising and interpreting data :

      • Visualising your findings can be a great way to reveal patterns. Line charts can help you spot trends, while bar charts can help you compare cohorts.
      • Guide your analytics team on how to interpret patterns in cohort data. Watch for sudden drops or spikes and what they could mean. 

    5. Continue improving :

      • User behaviour is constantly evolving, so be adaptable. Continuous tracking of user behaviour will help keep your strategies up to date. 
      • Encourage iterative analysis optimisation based on your findings. 
    wrench trying to hammer in a nail, and a hammer trying to screw in a screw to a piece of wood

    The top cohort analysis tools for 2024

    In this section, we’ll go over the best cohort analysis tools for 2024, including their key features, cohort analysis dashboards, cost and pros and cons.

    1. Matomo

    A screenshot of a cohorts graph in Matomo

    Matomo is an open-source, GDPR-compliant web analytics solution that offers cohort analysis as a standard feature in Matomo Cloud and is available as a plugin for Matomo On-Premise. Pairing traditional web analytics with cohort analysis will help you gain even deeper insights into understanding user behaviour over time. 

    You can use the data you get from web analytics to identify patterns in user behaviour and target your marketing strategies to specific cohorts. 

    Key features

    • Matomo offers a cohorts table that lets you compare cohorts side-by-side, and it comes with a time series.
      • All core session and conversion metrics are also available in the Cohorts report.
    • Create custom segments based on demographics, geography, referral sources, acquisition date, device types or user behaviour. 
    • Matomo provides retention analysis so you can track how many users from a specific cohort return to your website and when. 
    • Flexibly analyse your cohorts with custom reports. Customise your reports by combining metrics and dimensions specific to different cohorts. 
    • Create cohorts based on events or interactions with your website. 
    • Intuitive, colour-coded data visualisation, so you can easily spot patterns.

    Pros

    • No setup is needed if you use the JavaScript tracker
    • You can fetch cohort without any limit
    • 100% accurate data, no AI or Machine Learning data filling, and without the use of data sampling

    Cons

    • Matomo On-Premise (self-hosted) is free, but advanced features come with additional charges
    • Servers and technical know-how are required for Matomo On-Premise. Alternatively, for those not ready for self-hosting, Matomo Cloud presents a more accessible option and starts at $19 per month.

    Price : 

    • Matomo Cloud : 21-day free trial, then starts at $19 per month (includes Cohorts).
    • Matomo On-Premise : Free to self-host ; Cohorts plugin : 30-day free trial, then $99 per year.

    2. Mixpanel

    Mixpanel is a product analytics tool designed to help teams better understand user behaviour. It is especially well-suited for analysing user behaviour on iOS and Android apps. It offers various cohort analytics features that can be used to identify patterns and engage your users. 

    Key features

    • Create cohorts based on criteria such as sign-up date, first purchase date, referral source, geographic location, device type or another custom event/property. 
    • Compare how different cohorts engage with your app with Mixpanel’s comparative analysis features.
    • Create interactive dashboards, charts and graphs to visualise data.
    • Mixpanel provides retention analysis tools to see how often users return to your product over time. 
    • Send targeted messages and notifications to specific cohorts to encourage user engagement, announce new features, etc. 
    • Track and analyse user behaviours within cohorts — understand how different types of users engage with your product.

    Pros

    • Easily export cohort analysis data for further analysis
    • Combined with Mixpanel reports, cohorts can be a powerful tool for improving your product

    Cons

    • With the free Mixpanel plan, you can’t save cohorts for future use
    • Enterprise-level pricing is expensive
    • Time-consuming cohort creation process

    Price : Free basic version. The growth version starts at £16/month.

    3. Amplitude

    A screenshot of a cohorts graph in Amplitude

    Amplitude is another product analytics solution that can help businesses track user interactions across digital platforms. Amplitude offers a standard toolkit for in-depth cohort analysis.

    Key features

    • Create cohorts based on criteria such as sign-up date, first purchase date, referral source, geographic location, device type or another custom event/property. 
    • Conduct behavioural, time-based and retention analyses.
    • Create custom reports with custom data.
    • Segment cohorts further based on additional criteria and compare multiple cohorts side-by-side.

    Pros

    • Highly customisable and flexible
    • Quick and simple setup

    Cons

    • Steep learning curve — requires significant training 
    • Slow loading speed
    • High price point compared to other tools

    Price : Free basic version. Plus version starts at £40/month (billed annually).

    4. Kissmetrics

    A screenshot of a cohorts graph in Kissmetrics

    Kissmetrics is a customer engagement automation platform that offers powerful analytics features. Kissmetrics provides behavioural analytics, segmentation and email campaign automation. 

    Key features

    • Create cohorts based on demographics, user behaviour, referral sources, events and specific time frames.
    • The user path tool provides path visualisation so you can identify common paths users take and spot abandonment points. 
    • Create and optimise conversion funnels.
    • Customise events, user properties, funnels, segments, cohorts and more.

    Pros

    • Powerful data visualisation options
    • Highly customisable

    Cons

    • Difficult to install
    • Not well-suited for small businesses
    • Limited integration with other tools

    Price : Starting at £21/month for 10k events (billed monthly).

    Improve your cohort analysis with Matomo

    When choosing a cohort analysis tool, consider factors such as the tool’s ease of integration with your existing systems, data accuracy, the flexibility it offers in defining cohorts, the comprehensiveness of reporting features, and its scalability to accommodate the growth of your data and analysis needs over time. Moreover, it’s essential to confirm GDPR compliance to uphold rigorous privacy standards. 

    If you’re ready to understand your user’s behaviour, take Matomo for a test drive. Paired with web analytics, this powerful combination can advance your marketing efforts. Start your 21-day free trial today — no credit card required.