
Recherche avancée
Médias (1)
-
Revolution of Open-source and film making towards open film making
6 octobre 2011, par
Mis à jour : Juillet 2013
Langue : English
Type : Texte
Autres articles (39)
-
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...) -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
De l’upload à la vidéo finale [version standalone]
31 janvier 2010, parLe chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
Upload et récupération d’informations de la vidéo source
Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)
Sur d’autres sites (7738)
-
swresample/resample : speed up upsampling by precomputing sines
9 novembre 2015, par Ganesh Ajjanagaddeswresample/resample : speed up upsampling by precomputing sines
When upsampling, factor is set to 1 and sines need to be evaluated only
once for each phase, and the complexity should not depend on the number
of filter taps. This does the desired precomputation, yielding
significant speedups. Hard guarantees on the gain are not possible, but gains
themselves are obvious and are illustrated below.Sample benchmark (x86-64, Haswell, GNU/Linux)
test : fate-swr-resample-dblp-2626-44100
old :
29161085 decicycles in build_filter (loop 1000), 256 runs, 0 skips
28821467 decicycles in build_filter (loop 1000), 512 runs, 0 skips
28668201 decicycles in build_filter (loop 1000), 1000 runs, 24 skipsnew :
14351936 decicycles in build_filter (loop 1000), 256 runs, 0 skips
14306652 decicycles in build_filter (loop 1000), 512 runs, 0 skips
14299923 decicycles in build_filter (loop 1000), 1000 runs, 24 skipsNote that this does not statically allocate the sin lookup table. This
may be done for the default 1024 phases, yielding a 512*8 = 4kB array
which should be small enough.
This should yield a small improvement. Nevertheless, this is separate from
this patch, is more ambiguous due to the binary increase, and requires a
lut to be generated offline.Reviewed-by : Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com> -
swresample/resample : speed up Blackman Nuttall filter
9 novembre 2015, par Ganesh Ajjanagaddeswresample/resample : speed up Blackman Nuttall filter
This may be a slightly surprising optimization, but is actually based on
an understanding of how math libraries compute trigonometric functions.
Explanation is given here so that future development uses libm more effectively
across the codebase.All libm’s essentially compute transcendental functions via some kind of
polynomial approximation, be it Taylor-Maclaurin or Chebyshev.
Correction terms are added via polynomial correction factors when needed
to squeeze out the last bits of accuracy. Lookup tables are also
inserted strategically.In the case of trigonometric functions, periodicity is exploited via
first doing a range reduction to an interval around zero, and then using
some polynomial approximation.This range reduction is the most natural way of doing things - else one
would need polynomials for ranges in different periods which makes no
sense whatsoever.To avoid the need for the range reduction, it is helpful to feed in
arguments as close to the origin as possible for the trigonometric
functions. In fact, this also makes sense from an accuracy point of view :
IEEE floating point has far more resolution for small numbers than big ones.This patch does this for the Blackman-Nuttall filter, and yields a
non-negligible speedup.Sample benchmark (x86-64, Haswell, GNU/Linux)
test : fate-swr-resample-dblp-2626-44100
old :
18893514 decicycles in build_filter (loop 1000), 256 runs, 0 skips
18599863 decicycles in build_filter (loop 1000), 512 runs, 0 skips
18445574 decicycles in build_filter (loop 1000), 1000 runs, 24 skipsnew :
16290697 decicycles in build_filter (loop 1000), 256 runs, 0 skips
16267172 decicycles in build_filter (loop 1000), 512 runs, 0 skips
16251105 decicycles in build_filter (loop 1000), 1000 runs, 24 skipsReviewed-by : Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com> -
swresample/resample : improve bessel function accuracy and speed
2 novembre 2015, par Ganesh Ajjanagaddeswresample/resample : improve bessel function accuracy and speed
This improves accuracy for the bessel function at large arguments, and this in turn
should improve the quality of the Kaiser window. It also improves the
performance of the bessel function and hence build_filter by 20%.
Details are given below.Algorithm : taken from the Boost project, who have done a detailed
investigation of the accuracy of their method, as compared with e.g the
GNU Scientific Library (GSL) :
http://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/mbessel.html.
Boost source code (also cited and licensed in the code) :
https://searchcode.com/codesearch/view/14918379/.Accuracy : sample values may be obtained as follows. i0 denotes the old bessel code,
i0_boost the approach here, and i0_real an arbitrary precision result (truncated) from Wolfram Alpha :
type "bessel i0(6.0)" to reproduce. These are evaluation points that occur for
the default kaiser_beta = 9.Some illustrations :
bessel(8.0)
i0 (8.000000) = 427.564115721804739678191254
i0_boost(8.000000) = 427.564115721804796521610115
i0_real (8.000000) = 427.564115721804785177396791bessel(6.0)
i0 (6.000000) = 67.234406976477956163762428
i0_boost(6.000000) = 67.234406976477970374617144
i0_real (6.000000) = 67.234406976477975326188025Reason for accuracy : Main accuracy benefits come at larger bessel arguments, where the
Taylor-Maclaurin method is not that good : 23+ iterations
(at large arguments, since the series is about 0) can cause
significant floating point error accumulation.Benchmarks : Obtained on x86-64, Haswell, GNU/Linux via a loop calling
build_filter 1000 times :
test : fate-swr-resample-dblp-44100-2626new :
995894468 decicycles in build_filter(loop 1000), 256 runs, 0 skips
1029719302 decicycles in build_filter(loop 1000), 512 runs, 0 skips
984101131 decicycles in build_filter(loop 1000), 1024 runs, 0 skipsold :
1250020763 decicycles in build_filter(loop 1000), 256 runs, 0 skips
1246353282 decicycles in build_filter(loop 1000), 512 runs, 0 skips
1220017565 decicycles in build_filter(loop 1000), 1024 runs, 0 skipsA further 5% may be squeezed by enabling -ftree-vectorize. However,
this is a separate issue from this patch.Reviewed-by : Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com>