Recherche avancée

Médias (1)

Mot : - Tags -/karaoke

Autres articles (50)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 est la première version de MediaSPIP stable.
    Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Les tâches Cron régulières de la ferme

    1er décembre 2010, par

    La gestion de la ferme passe par l’exécution à intervalle régulier de plusieurs tâches répétitives dites Cron.
    Le super Cron (gestion_mutu_super_cron)
    Cette tâche, planifiée chaque minute, a pour simple effet d’appeler le Cron de l’ensemble des instances de la mutualisation régulièrement. Couplée avec un Cron système sur le site central de la mutualisation, cela permet de simplement générer des visites régulières sur les différents sites et éviter que les tâches des sites peu visités soient trop (...)

Sur d’autres sites (5887)

  • FFmpeg encoding slow for 4K HDR content

    1er mars 2023, par Geno Diaz

    When processing 4K input with the following configuration it is taking upwards of 2 minutes to process a 35s, 60fps, 4K HDR clip recorded from an iPhone. Is this the expected performance or is there an inefficiency within the configuration that is causing this ?

    


    In comparison, running this configuration on a 35s, 30fps, 4K non-HDR clip, only takes about 20 seconds.

    


    ffmpeg 
-i "input path" 
-y 
-filter:v scale=w=2160:h=3840 
-threads 4 
-r 59.94 
-c:v libx264 
-preset veryfast 
-vsync 1 
-tune film 
-maxrate 6000k 
-bufsize 5400k 
-g 60 
-x264opts no-scenecut 
-c:a aac 
-af aresample=async=1:min_hard_comp=0.100000:first_pts=0 
-ac 2 
-b:a 128k 
-ar 44100 
-vf zscale=transfer=linear:npl=100,
  format=gbrpf32le,
  zscale=primaries=bt709,
  tonemap=tonemap=hable:desat=0,
  zscale=transfer=bt709:matrix=bt709:range=tv,
  format=yuv420p 
-sws_flags full_chroma_int+full_chroma_inp 
-pix_fmt yuv420p 
"outputfile".mp4


    


  • Computer crashing when using python tools in same script

    5 février 2023, par SL1997

    I am attempting to use the speech recognition toolkit VOSK and the speech diarization package Resemblyzer to transcibe audio and then identify the speakers in the audio.

    


    Tools :

    


    https://github.com/alphacep/vosk-api
    
https://github.com/resemble-ai/Resemblyzer

    


    I can do both things individually but run into issues when trying to do them when running the one python script.

    


    I used the following guide when setting up the diarization system :

    


    https://medium.com/saarthi-ai/who-spoke-when-build-your-own-speaker-diarization-module-from-scratch-e7d725ee279

    


    Computer specs are as follows :

    


    Intel(R) Core(TM) i3-7100 CPU @ 3.90GHz, 3912 Mhz, 2 Core(s), 4 Logical Processor(s)
    
32GB RAM

    


    The following is my code, I am not to sure if using threading is appropriate or if I even implemented it correctly, how can I best optimize this code as to achieve the results I am looking for and not crash.

    


    from vosk import Model, KaldiRecognizer
from pydub import AudioSegment
import json
import sys
import os
import subprocess
import datetime
from resemblyzer import preprocess_wav, VoiceEncoder
from pathlib import Path
from resemblyzer.hparams import sampling_rate
from spectralcluster import SpectralClusterer
import threading
import queue
import gc



def recognition(queue, audio, FRAME_RATE):

    model = Model("Vosk_Models/vosk-model-small-en-us-0.15")

    rec = KaldiRecognizer(model, FRAME_RATE)
    rec.SetWords(True)

    rec.AcceptWaveform(audio.raw_data)
    result = rec.Result()

    transcript = json.loads(result)#["text"]

    #return transcript
    queue.put(transcript)



def diarization(queue, audio):

    wav = preprocess_wav(audio)
    encoder = VoiceEncoder("cpu")
    _, cont_embeds, wav_splits = encoder.embed_utterance(wav, return_partials=True, rate=16)
    print(cont_embeds.shape)

    clusterer = SpectralClusterer(
        min_clusters=2,
        max_clusters=100,
        p_percentile=0.90,
        gaussian_blur_sigma=1)

    labels = clusterer.predict(cont_embeds)

    def create_labelling(labels, wav_splits):

        times = [((s.start + s.stop) / 2) / sampling_rate for s in wav_splits]
        labelling = []
        start_time = 0

        for i, time in enumerate(times):
            if i > 0 and labels[i] != labels[i - 1]:
                temp = [str(labels[i - 1]), start_time, time]
                labelling.append(tuple(temp))
                start_time = time
            if i == len(times) - 1:
                temp = [str(labels[i]), start_time, time]
                labelling.append(tuple(temp))

        return labelling

    #return
    labelling = create_labelling(labels, wav_splits)
    queue.put(labelling)



def identify_speaker(queue1, queue2):

    transcript = queue1.get()
    labelling = queue2.get()

    for speaker in labelling:

        speakerID = speaker[0]
        speakerStart = speaker[1]
        speakerEnd = speaker[2]

        result = transcript['result']
        words = [r['word'] for r in result if speakerStart < r['start'] < speakerEnd]
        #return
        print("Speaker",speakerID,":",' '.join(words), "\n")





def main():

    queue1 = queue.Queue()
    queue2 = queue.Queue()

    FRAME_RATE = 16000
    CHANNELS = 1

    podcast = AudioSegment.from_mp3("Podcast_Audio/Film-Release-Clip.mp3")
    podcast = podcast.set_channels(CHANNELS)
    podcast = podcast.set_frame_rate(FRAME_RATE)

    first_thread = threading.Thread(target=recognition, args=(queue1, podcast, FRAME_RATE))
    second_thread = threading.Thread(target=diarization, args=(queue2, podcast))
    third_thread = threading.Thread(target=identify_speaker, args=(queue1, queue2))

    first_thread.start()
    first_thread.join()
    gc.collect()

    second_thread.start()
    second_thread.join()
    gc.collect()

    third_thread.start()
    third_thread.join()
    gc.collect()

    # transcript = recognition(podcast,FRAME_RATE)
    #
    # labelling = diarization(podcast)
    #
    # print(identify_speaker(transcript, labelling))


if __name__ == '__main__':
    main()


    


    When I say crash I mean everything freezes, I have to hold down the power button on the desktop and turn it back on again. No blue/blank screen, just frozen in my IDE looking at my code. Any help in resolving this issue would be greatly appreciated.

    


  • How to do filter twice at different time ffmpeg

    29 décembre 2022, par Мохамед Русланович

    Am trying to implement overlay twice but at different position and different time
Here is what am trying to do :
i just duplicate the filter

    


    ffmpeg -t 50 -y -i film.mp4 -stream_loop -1 -i gif.gif -filter_complex "


[1]colorchannelmixer=aa=1,scale=iw*2:-1[a];[0][a]overlay=x='200':y='300':shortest=1:enable='between(t,0,10)';

[1]colorchannelmixer=aa=1,scale=iw*2:-1[b];[0][b]overlay=x='200':y='300':shortest=1:enable='between(t,15,20)'"  

-acodec copy output_task_3.mp4


    


    But only the first overlay is been implemented, the seconds is not !

    


    how to archive this ?

    


    Now i wrote a PHP script that dose this filter once each time, and repeat proccess then merge all videos, but this is taking so long.