Recherche avancée

Médias (91)

Autres articles (40)

  • Support audio et vidéo HTML5

    10 avril 2011

    MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
    Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
    Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
    Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

  • De l’upload à la vidéo finale [version standalone]

    31 janvier 2010, par

    Le chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
    Upload et récupération d’informations de la vidéo source
    Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
    Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)

Sur d’autres sites (7915)

  • Overcoming Fintech and Finserv’s Biggest Data Analytics Challenges

    13 septembre 2024, par Daniel Crough — Banking and Financial Services, Marketing, Security

    Data powers innovation in financial technology (fintech), from personalized banking services to advanced fraud detection systems. Industry leaders recognize the value of strong security measures and customer privacy. A recent survey highlights this focus, with 72% of finance Chief Risk Officers identifying cybersecurity as their primary concern.

    Beyond cybersecurity, fintech and financial services (finserv) companies are bogged down with massive amounts of data spread throughout disconnected systems. Between this, a complex regulatory landscape and an increasingly tech-savvy and sceptical consumer base, fintech and finserv companies have a lot on their plates.

    How can marketing teams get the information they need while staying focused on compliance and providing customer value ? 

    This article will examine strategies to address common challenges in the finserv and fintech industries. We’ll focus on using appropriate tools, following effective data management practices, and learning from traditional banks’ approaches to similar issues.

    What are the biggest fintech data analytics challenges, and how do they intersect with traditional banking ?

    Recent years have been tough for the fintech industry, especially after the pandemic. This period has brought new hurdles in data analysis and made existing ones more complex. As the market stabilises, both fintech and finserve companies must tackle these evolving data issues.

    Let’s examine some of the most significant data analytics challenges facing the fintech industry, starting with an issue that’s prevalent across the financial sector :

    1. Battling data silos

    In a recent survey by InterSystems, 54% of financial institution leaders said data silos are their biggest barrier to innovation, while 62% said removing silos is their priority data strategy for the next year.

    a graphic highlighting fintech concerns about siloed data

    Data silos segregate data repositories across departments, products and other divisions. This is a major issue in traditional banking and something fintech companies should avoid inheriting at all costs.

    Siloed data makes it harder for decision-makers to view business performance with 360-degree clarity. It’s also expensive to maintain and operationalise and can evolve into privacy and data compliance issues if left unchecked.

    To avoid or remove data silos, develop a data governance framework and centralise your data repositories. Next, simplify your analytics stack into as few integrated tools as possible because complex tech stacks are one of the leading causes of data silos.

    Use an analytics system like Matomo that incorporates web analytics, marketing attribution and CRO testing into one toolkit.

    A screenshot of Matomo web analytics

    Matomo’s support plans help you implement a data system to meet the unique needs of your business and avoid issues like data silos. We also offer data warehouse exporting as a feature to bring all of your web analytics, customer data, support data, etc., into one centralised location.

    Try Matomo for free today, or contact our sales team to discuss support plans.

    2. Compliance with laws and regulations

    A survey by Alloy reveals that 93% of fintech companies find it difficult to meet compliance regulations. The cost of staying compliant tops their list of worries (23%), outranking even the financial hit from fraud (21%) – and this in a year marked by cyber threats.

    a bar chart shows the top concerns of fintech regulation compliance

    Data privacy laws are constantly changing, and the landscape varies across global regions, making adherence even more challenging for fintechs and traditional banks operating in multiple markets. 

    In the US market, companies grapple with regulations at both federal and state levels. Here are some of the state-level legislation coming into effect for 2024-2026 :

    Other countries are also ramping up regional regulations. For instance, Canada has Quebec’s Act Respecting the Protection of Personal Information in the Private Sector and British Columbia’s Personal Information Protection Act (BC PIPA).

    Ignorance of country- or region-specific laws will not stop companies from suffering the consequences of violating them.

    The only answer is to invest in adherence and manage business growth accordingly. Ultimately, compliance is more affordable than non-compliance – not only in terms of the potential fines but also the potential risks to reputation, consumer trust and customer loyalty.

    This is an expensive lesson that fintech and traditional financial companies have had to learn together. GDPR regulators hit CaixaBank S.A, one of Spain’s largest banks, with multiple multi-million Euro fines, and Klarna Bank AB, a popular Swedish fintech company, for €720,000.

    To avoid similar fates, companies should :

    1. Build solid data systems
    2. Hire compliance experts
    3. Train their teams thoroughly
    4. Choose data analytics tools carefully

    Remember, even popular tools like Google Analytics aren’t automatically safe. Find out how Matomo helps you gather useful insights while sticking to rules like GDPR.

    3. Protecting against data security threats

    Cyber threats are increasing in volume and sophistication, with the financial sector becoming the most breached in 2023.

    a bar chart showing the percentage of data breaches per industry from 2021 to 2023
<p>

    The cybersecurity risks will only worsen, with WEF estimating annual cybercrime expenses of up to USD $10.5 trillion globally by 2025, up from USD $3 trillion in 2015.

    While technology brings new security solutions, it also amplifies existing risks and creates new ones. A 2024 McKinsey report warns that the risk of data breaches will continue to increase as the financial industry increasingly relies on third-party data tools and cloud computing services unless they simultaneously improve their security posture.

    The reality is that adopting a third-party data system without taking the proper precautions means adopting its security vulnerabilities.

    In 2023, the MOVEit data breach affected companies worldwide, including financial institutions using its file transfer system. One hack created a global data crisis, potentially affecting the customer data of every company using this one software product.

    The McKinsey report emphasises choosing tools wisely. Why ? Because when customer data is compromised, it’s your company that takes the heat, not the tool provider. As the report states :

    “Companies need reliable, insightful metrics and reporting (such as security compliance, risk metrics and vulnerability tracking) to prove to regulators the health of their security capabilities and to manage those capabilities.”

    Don’t put user or customer data in the hands of companies you can’t trust. Work with providers that care about security as much as you do. With Matomo, you own all of your data, ensuring it’s never used for unknown purposes.

    A screenshot of Matomo visitor reporting

    4. Protecting users’ privacy

    With security threats increasing, fintech companies and traditional banks must prioritise user privacy protection. Users are also increasingly aware of privacy threats and ready to walk away from companies that lose their trust.

    Cisco’s 2023 Data Privacy Benchmark Study reveals some eye-opening statistics :

    • 94% of companies said their customers wouldn’t buy from them if their data wasn’t protected, and 
    • 95% see privacy as a business necessity, not just a legal requirement.

    Modern financial companies must balance data collection and management with increasing privacy demands. This may sound contradictory for companies reliant on dated practices like third-party cookies, but they need to learn to thrive in a cookieless web as customers move to banks and service providers that have strong data ethics.

    This privacy protection journey starts with implementing web analytics ethically from the very first session.

    A graphic showing the four key elements of ethical web analytics: 100% data ownership, respecting user privacy, regulatory compliance and Data transparency

    The most important elements of ethically-sound web analytics in fintech are :

    1. 100% data ownership : Make sure your data isn’t used in other ways by the tools that collect it.
    2. Respecting user privacy : Only collect the data you absolutely need to do your job and avoid personally identifiable information.
    3. Regulatory compliance : Stick with solutions built for compliance to stay out of legal trouble.
    4. Data transparency : Know how your tools use your data and let your customers know how you use it.

    Read our guide to ethical web analytics for more information.

    5. Comparing customer trust across industries 

    While fintech companies are making waves in the financial world, they’re still playing catch-up when it comes to earning customer trust. According to RFI Global, fintech has a consumer trust score of 5.8/10 in 2024, while traditional banking scores 7.6/10.

    a comparison of consumer trust in fintech vs traditional finance

    This trust gap isn’t just about perception – it’s rooted in real issues :

    • Security breaches are making headlines more often.
    • Privacy regulations like GDPR are making consumers more aware of their rights.
    • Some fintech companies are struggling to handle fraud effectively.

    According to the UK’s Payment Systems Regulator, digital banking brands Monzo and Starling had some of the highest fraudulent activity rates in 2022. Yet, Monzo only reimbursed 6% of customers who reported suspicious transactions, compared to 70% for NatWest and 91% for Nationwide.

    So, what can fintech firms do to close this trust gap ?

    • Start with privacy-centric analytics from day one. This shows customers you value their privacy from the get-go.
    • Build and maintain a long-term reputation free of data leaks and privacy issues. One major breach can undo years of trust-building.
    • Learn from traditional banks when it comes to handling issues like fraudulent transactions, identity theft, and data breaches. Prompt, customer-friendly resolutions go a long way.
    • Remember : cutting-edge financial technology doesn’t make up for poor customer care. If your digital bank won’t refund customers who’ve fallen victim to credit card fraud, they’ll likely switch to a traditional bank that will.

    The fintech sector has made strides in innovation, but there’s still work to do in establishing trustworthiness. By focusing on robust security, transparent practices, and excellent customer service, fintech companies can bridge the trust gap and compete more effectively with traditional banks.

    6. Collecting quality data

    Adhering to data privacy regulations, protecting user data and implementing ethical analytics raises another challenge. How can companies do all of these things and still collect reliable, quality data ?

    Google’s answer is using predictive models, but this replaces real data with calculations and guesswork. The worst part is that Google Analytics doesn’t even let you use all of the data you collect in the first place. Instead, it uses something called data sampling once you pass certain thresholds.

    In practice, this means that Google Analytics uses a limited set of your data to calculate reports. We’ve discussed GA4 data sampling at length before, but there are two key problems for companies here :

    1. A sample size that’s too small won’t give you a full representation of your data.
    2. The more visitors that come to your site, the less accurate your reports will become.

    For high-growth companies, data sampling simply can’t keep up. Financial marketers widely recognise the shortcomings of big tech analytics providers. In fact, 80% of them say they’re concerned about data bias from major providers like Google and Meta affecting valuable insights.

    This is precisely why CRO:NYX Digital approached us after discovering Google Analytics wasn’t providing accurate campaign data. We set up an analytics system to suit the company’s needs and tested it alongside Google Analytics for multiple campaigns. In one instance, Google Analytics failed to register 6,837 users in a single day, approximately 9.8% of the total tracked by Matomo.

    In another instance, Google Analytics only tracked 600 visitors over 24 hours, while Matomo recorded nearly 71,000 visitors – an 11,700% discrepancy.

    a data visualisation showing the discrepancy in Matomo's reporting vs Google Analytics

    Financial companies need a more reliable, privacy-centric alternative to Google Analytics that captures quality data without putting users at potential risk. This is why we built Matomo and why our customers love having total control and visibility of their data.

    Unlock the full power of fintech data analytics with Matomo

    Fintech companies face many data-related challenges, so compliant web analytics shouldn’t be one of them. 

    With Matomo, you get :

    • An all-in-one solution that handles traditional web analytics, behavioural analytics and more with strong integrations to minimise the likelihood of data siloing
    • Full compliance with GDPR, CCPA, PIPL and more
    • Complete ownership of your data to minimise cybersecurity risks caused by negligent third parties
    • An abundance of ways to protect customer privacy, like IP address anonymisation and respect for DoNotTrack settings
    • The ability to import data from Google Analytics and distance yourself from big tech
    • High-quality data that doesn’t rely on sampling
    • A tool built with financial analytics in mind

    Don’t let big tech companies limit the power of your data with sketchy privacy policies and counterintuitive systems like data sampling. 

    Start your Matomo free trial or request a demo to unlock the full power of fintech data analytics without putting your customers’ personal information at unnecessary risk.

  • Progress with rtc.io

    12 août 2014, par silvia

    At the end of July, I gave a presentation about WebRTC and rtc.io at the WDCNZ Web Dev Conference in beautiful Wellington, NZ.

    webrtc_talk

    Putting that talk together reminded me about how far we have come in the last year both with the progress of WebRTC, its standards and browser implementations, as well as with our own small team at NICTA and our rtc.io WebRTC toolbox.

    WDCNZ presentation page5

    One of the most exciting opportunities is still under-exploited : the data channel. When I talked about the above slide and pointed out Bananabread, PeerCDN, Copay, PubNub and also later WebTorrent, that’s where I really started to get Web Developers excited about WebRTC. They can totally see the shift in paradigm to peer-to-peer applications away from the Server-based architecture of the current Web.

    Many were also excited to learn more about rtc.io, our own npm nodules based approach to a JavaScript API for WebRTC.

    rtcio_modules

    We believe that the World of JavaScript has reached a critical stage where we can no longer code by copy-and-paste of JavaScript snippets from all over the Web universe. We need a more structured module reuse approach to JavaScript. Node with JavaScript on the back end really only motivated this development. However, we’ve needed it for a long time on the front end, too. One big library (jquery anyone ?) that does everything that anyone could ever need on the front-end isn’t going to work any longer with the amount of functionality that we now expect Web applications to support. Just look at the insane growth of npm compared to other module collections :

    Packages per day across popular platforms (Shamelessly copied from : http://blog.nodejitsu.com/npm-innovation-through-modularity/)

    For those that – like myself – found it difficult to understand how to tap into the sheer power of npm modules as a font end developer, simply use browserify. npm modules are prepared following the CommonJS module definition spec. Browserify works natively with that and “compiles” all the dependencies of a npm modules into a single bundle.js file that you can use on the front end through a script tag as you would in plain HTML. You can learn more about browserify and module definitions and how to use browserify.

    For those of you not quite ready to dive in with browserify we have prepared prepared the rtc module, which exposes the most commonly used packages of rtc.io through an “RTC” object from a browserified JavaScript file. You can also directly download the JavaScript file from GitHub.

    Using rtc.io rtc JS library
    Using rtc.io rtc JS library

    So, I hope you enjoy rtc.io and I hope you enjoy my slides and large collection of interesting links inside the deck, and of course : enjoy WebRTC ! Thanks to Damon, JEeff, Cathy, Pete and Nathan – you’re an awesome team !

    On a side note, I was really excited to meet the author of browserify, James Halliday (@substack) at WDCNZ, whose talk on “building your own tools” seemed to take me back to the times where everything was done on the command-line. I think James is using Node and the Web in a way that would appeal to a Linux Kernel developer. Fascinating !!

    The post Progress with rtc.io first appeared on ginger’s thoughts.

  • Date and segment comparison feature

    31 octobre 2019, par Matomo Core Team — Analytics Tips, Development

    Get a clearer picture with the date and segment comparison feature

    What can you do with it ? What are the benefits ?

    Make informed decisions faster by easily comparing different segments and dates with each other.

    Compare report data for multiple segments next to each other

    Segment comparison feature

    Directly compare the behaviour of visitors from different segments e.g. customers with accounts vs. customers without accounts. Segment comparisons are a powerful way to compare different audience ; learn which ones perform better ; and in what way their actions differ. 

    Compare report data for two time periods next to each other

    Comparing date ranges

    See how your website performs compared to the previous month/week/year. Including seeing trends over those periods. Say, your business always picks up at the same times within a year, or there’s a sag in business for every user segment over this year and the last except one.

    By being able to compare date ranges you are able to get a quick overview of trends and period to period performance. Has a campaign worked better in September than in October ? Get an instant look by having the side-by-side comparison in Matomo.

    What is it capable of ?

    It lets you ask the question, “What is different ?”

    If you look at reports you’ll only see how people behave overall and if you look at specific segments you’ll see how they behave at face value, however, if you compare data together you’ll be quickly informed on what makes them unique. This data is still there when you don’t use the comparison feature, it’s just buried. Comparing data highlights discrepancies and leads to important questions and answers.

    For example, perhaps some class of users have very low engagement on a specific day compared to the rest of your visitors, and perhaps those users are responsible for an outsized proportion of churn. 

    Who could benefit from it, and why ?

    Everyone can benefit from using it (and probably should use it). It’s yours to experiment with ! You shouldn’t feel restricted to only comparing between the current and last period, or having questions before you start comparing. Follow your instincts and see what pops out when data from different segments is laid out next to each other.

    Where can you find it in Matomo ?

    • Segment comparison is activated by the new icon in the segment selector
    Segment comparison feature
    • Date comparison can be found in the calendar section of Matomo
    Date comparison feature
    • The list of active comparisons is visible at the top of the page for all pages that support comparison
    • Comparisons are visible in every report that supports comparing data, and reports that do not support it will display a message saying so

    How do you use it ?

    • To compare segments, click the icon in the segment selector
    • To compare periods, click the ‘compare’ checkbox in the period selector, then select what period you want to compare it against in the dropdown (previous period, previous year, or a custom range)
    • When comparisons are active, view your reports as normal

    Take it away !

    The comparison feature is a new tool from Matomo 3.12.0 that highlights discrepancies and differences in data that can lead to more clarity and understanding, so we’d encourage everyone to use it. 

    Try it out today in your Matomo and see the power behind this new data comparison mode !