Recherche avancée

Médias (0)

Mot : - Tags -/signalement

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (59)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

Sur d’autres sites (6078)

  • Unveiling GA4 Issues : 8 Questions from a Marketer That GA4 Can’t Answer

    8 janvier 2024, par Alex

    It’s hard to believe, but Universal Analytics had a lifespan of 11 years, from its announcement in March 2012. Despite occasional criticism, this service established standards for the entire web analytics industry. Many metrics and reports became benchmarks for a whole generation of marketers. It truly was an era.

    For instance, a lot of marketers got used to starting each workday by inspecting dashboards and standard traffic reports in the Universal Analytics web interface. There were so, so many of those days. They became so accustomed to Universal Analytics that they would enter reports, manipulate numbers, and play with metrics almost on autopilot, without much thought.

    However, six months have passed since the sunset of Universal Analytics – precisely on July 1, 2023, when Google stopped processing requests for resources using the previous version of Google Analytics. The time when data about visitors and their interactions with the website were more clearly structured within the UA paradigm is now in the past. GA4 has brought a plethora of opportunities to marketers, but along with those opportunities came a series of complexities.

    GA4 issues

    Since its initial announcement in 2020, GA4 has been plagued with errors and inconsistencies. It still has poor and sometimes illogical documentation, numerous restrictions, and peculiar interface solutions. But more importantly, the barrier to entry into web analytics has significantly increased.

    If you diligently follow GA4 updates, read the documentation, and possess skills in working with data (SQL and basic statistics), you probably won’t feel any problems – you know how to set up a convenient and efficient environment for your product and marketing data. But what if you’re not that proficient ? That’s when issues arise.

    In this article, we try to address a series of straightforward questions that less experienced users – marketers, project managers, SEO specialists, and others – want answers to. They have no time to delve into the intricacies of GA4 but seek access to the fundamentals crucial for their functionality.

    Previously, in Universal Analytics, they could quickly and conveniently address their issues. Now, the situation has become, to put it mildly, more complex. We’ve identified 8 such questions for which the current version of GA4 either fails to provide answers or implies that answers would require significant enhancements. So, let’s dive into them one by one.

    Question 1 : What are the most popular traffic sources on my website ?

    Seemingly a straightforward question. What does GA4 tell us ? It responds with a question : “Which traffic source parameter are you interested in ?”

    GA4 traffic source

    Wait, what ?

    People just want to know which resources bring them the most traffic. Is that really an issue ?

    Unfortunately, yes. In GA4, there are not one, not two, but three traffic source parameters :

    1. Session source.
    2. First User Source – the source of the first session for each user.
    3. Just the source – determined at the event or conversion level.

    If you wanted to open a report and draw conclusions quickly, we have bad news for you. Before you start ranking your traffic sources by popularity, you need to do some mental work on which parameter and in what context you will look. And even when you decide, you’ll need to make a choice in the selection of standard reports : work with the User Acquisition Report or Traffic Acquisition.

    Yes, there is a difference between them : the first uses the First User Source parameter, and the second uses the session source. And you need to figure that out too.

    Question 2 : What is my conversion rate ?

    This question concerns everyone, and it should be simple, implying a straightforward answer. But no.

    GA4 conversion rate

    In GA4, there are three conversion metrics (yes, three) :

    1. Session conversion – the percentage of sessions with a conversion.
    2. User conversion – the percentage of users who completed a conversion.
    3. First-time Purchaser Conversion – the share of active users who made their first purchase.

    If the last metric doesn’t interest us much, GA4 users can still choose something from the remaining two. But what’s next ? Which parameters to use for comparison ? Session source or user source ? What if you want to see the conversion rate for a specific event ? And how do you do this in analyses rather than in standard reports ?

    In the end, instead of an answer to a simple question, marketers get a bunch of new questions.

    Question 3. Can I trust user and session metrics ?

    Unfortunately, no. This may boggle the mind of those not well-versed in the mechanics of calculating user and session metrics, but it’s the plain truth : the numbers in GA4 and those in reality may and will differ.

    GA4 confidence levels

    The reason is that GA4 uses the HyperLogLog++ statistical algorithm to count unique values. Without delving into details, it’s a mechanism for approximate estimation of a metric with a certain level of error.

    This error level is quite well-documented. For instance, for the Total Users metric, the error level is 1.63% (for a 95% confidence interval). In simple terms, this means that 100,000 users in the GA4 interface equate to 100,000 1.63% in reality.

    Furthermore – but this is no surprise to anyone – GA4 samples data. This means that with too large a sample size or when using a large number of parameters, the application will assess your metrics based on a partial sample – let’s say 5, 10, or 30% of the entire population.

    It’s a reasonable assumption, but it can (and probably will) surprise marketers – the metrics will deviate from reality. All end-users can do (excluding delving into raw data methodologies) is to take this error level into account in their conclusions.

    Question 4. How do I calculate First Click attribution ?

    You can’t. Unfortunately, as of late, GA4 offers only three attribution models available in the Attribution tab : Last Click, Last Click For Google Ads, and Data Driven. First Click attribution is essential for understanding where and when demand is generated. In the previous version of Google Analytics (and until recently, in the current one), users could quickly apply First Click and other attribution models, compare them, and gain insights. Now, this capability is gone.

    GA4 attribution model

    Certainly, you can look at the conversion distribution considering the First User Source parameter – this will be some proxy for First Click attribution. However, comparing it with others in the Model Comparison tab won’t be possible. In the context of the GA4 interface, it makes sense to forget about non-standard attribution models.

    Question 5. How do I account for intra-session traffic ?

    Intra-session traffic essentially refers to a change in traffic sources within a session. Imagine a scenario where a user comes to your site organically from Google and, within a minute, comes from an email campaign. In the previous version of Google Analytics, a new session with the traffic source “e-mail” would be created in such a case. But now, the situation has changed.

    A session now only ends in the case of a timeout – say, 30 minutes without interaction. This means a session will always have a source from which it started. If a user changes the source within a session (clicks on an ad, from email campaigns, and so on), you won’t know anything about it until they convert. This is a significant blow to intra-session traffic since their contribution to traffic remains virtually unnoticed. 

    Question 6. How can I account for users who have not consented to the use of third-party cookies ?

    You can’t. Google Consent Mode settings imply several options when a user rejects the use of 3rd party cookies. In GA4 and BigQuery, depersonalized cookieless pings will be sent. These pings do not contain specific client_id, session_id, or other custom dimensions. As a result, you won’t be able to consider them as users or link the actions of such users together.

    Question 7. How can I compare data in explorations with the previous year ?

    The maximum data retention period for a free GA4 account is 14 months. This means that if the date range is wider, you can only use standard reports. You won’t be able to compare or view cohorts or funnels for periods more than 14 months ago. This makes the product functionality less rich because various report formats in explorations are very convenient for comparing specific metrics in easily digestible reports.

    GA4 data retention

    Of course, you always have the option to connect BigQuery and store raw data without limitations, but this process usually requires the involvement of an advanced analyst. And precisely this option is unavailable to most marketers in small teams.

    Question 8. Is the data for yesterday accurate ?

    Unknown. Google declares that data processing in GA4 takes up to 48 hours. And although this process is faster, most users still have room for frustration. And they can be understood.

    Data processing time in GA4

    What does “data processing takes 24-48 hours” mean ? When will the data in reports be complete ? For yesterday ? Or the day before yesterday ? Or for all days that were more than two days ago ? Unclear. What should marketers tell their managers when they were asked if all the data is in this report ? Well, probably all of it… or maybe not… Let’s wait for 48 hours…

    Undoubtedly, computational resources and time are needed for data preprocessing and aggregation. It’s okay that data for today will not be up-to-date. And probably not for yesterday either. But people just want to know when they can trust their data. Are they asking for too much : just a note that this report contains all the data sent and processed by Google Analytics ?

    What should you do ?

    Credit should be given to the Google team – they have done a lot to enable users to answer these questions in one form or another. For example, you can use data streaming in BigQuery and work with raw data. The entry threshold for this functionality has been significantly lowered. In fact, if you are dissatisfied with the GA4 interface, you can organize your export to BigQuery and create your own reports without (almost) any restrictions.

    Another strong option is the widespread launch of GTM Server Side. This allows you to quite freely modify the event model and essentially enrich each hit with various parameters, doing this in a first-party context. This, of course, reduces the harmful impact of most of the limitations described in this text.

    But this is not a solution.

    The users in question – marketers, managers, developers – they do not want or do not have the time for a deep dive into the issue. And they want simple answers to simple (it seemed) questions. And for now, unfortunately, GA4 is more of a professional tool for analysts than a convenient instrument for generating insights for not very advanced users.

    Why is this such a serious issue ?

    The thing is – and this is crucial – over the past 10 years, Google has managed to create a sort of GA-bubble for marketers. Many of them have become so accustomed to Google Analytics that when faced with another issue, they don’t venture to explore alternative solutions but attempt to solve it on their own. And almost always, this turns out to be expensive and inconvenient.

    However, with the latest updates to GA4, it is becoming increasingly evident that this application is struggling to address even the most basic questions from users. And these questions are not fantastically complex. Much of what was described in this article is not an unsolvable mystery and is successfully addressed by other analytics services.

    Let’s try to answer some of the questions described from the perspective of Matomo.

    Question 1 : What are the most popular traffic sources ? [Solved]

    In the Acquisition panel, you will find at least three easily identifiable reports – for traffic channels (All Channels), sources (Websites), and campaigns (Campaigns). 

    Channel Type Table

    With these, you can quickly and easily answer the question about the most popular traffic sources, and if needed, delve into more detailed information, such as landing pages.

    Question 2 : What is my conversion rate ? [Solved]

    Under Goals in Matomo, you’ll easily find the overall conversion rate for your site. Below that you’ll have access to the conversion rate of each goal you’ve set in your Matomo instance.

    Question 3 : Can I trust user and session metrics ? [Solved]

    Yes. With Matomo, you’re guaranteed 100% accurate data. Matomo does not apply sampling, does not employ specific statistical algorithms, or any analogs of threshold values. Yes, it is possible, and it’s perfectly normal. If you see a metric in the visits or users field, it accurately represents reality by 100%.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Question 4 : How do I calculate First Click attribution ? [Solved]

    You can do this in the same section where the other 5 attribution models, available in Matomo, are calculated – in the Multi Attribution section.

    Multi Attribution feature

    You can choose a specific conversion and, in a few clicks, calculate and compare up to 3 marketing attribution models. This means you don’t have to spend several days digging through documentation trying to understand how a particular model is calculated. Have a question – get an answer.

    Question 5 : How do I account for intra-session traffic ? [Solved]

    Matomo creates a new visit when a user changes a campaign. This means that you will accurately capture all relevant traffic if it is adequately tagged. No campaigns will be lost within a visit, as they will have a new utm_campaign parameter.

    This is a crucial point because when the Referrer changes, a new visit is not created, but the key lies in something else – accounting for all available traffic becomes your responsibility and depends on how you tag it.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Question 6 : How can I account for users who have not consented to the use of third-party cookies ? [Solved]

    Google Analytics requires users to accept a cookie consent banner with “analytics_storage=granted” to track them. If users reject cookie consent banners, however, then Google Analytics can’t track these visitors at all. They simply won’t show up in your traffic reports. 

    Matomo doesn’t require cookie consent banners (apart from in the United Kingdom and Germany) and can therefore continue to track visitors even after they have rejected a cookie consent screen. This is achieved through a config_id variable (the user identifier equivalent which is updating once a day). 

    Matomo doesn't need cookie consent, so you see a complete view of your traffic

    This means that virtually all of your website traffic will be tracked regardless of whether users accept a cookie consent banner or not.

    Question 7 : How can I compare data in explorations with the previous year ? [Solved]

    There is no limitation on data retention for your aggregated reports in Matomo. The essence of Matomo experience lies in the reporting data, and consequently, retaining reports indefinitely is a viable option. So you can compare data for any timeframe. 7

    Date Comparison Selector
  • How to Implement Cross-Channel Analytics : A Guide for Marketers

    17 avril 2024, par Erin

    Every modern marketer knows they have to connect with consumers across several channels. But do you know how well Instagram works alongside organic traffic or your email list ? Are you even tracking the impacts of these channels in one place ?

    You need a cross-channel analytics solution if you answered no to either of these questions. 

    In this article, we’ll explain cross-channel analytics, why your company probably needs it and how to set up a cross-channel analytics solution as quickly and easily as possible.

    What is cross-channel analytics ? 

    Cross-channel analytics is a form of marketing analytics that collects and analyses data from every channel and campaign you use.

    The result is a comprehensive view of your customer’s journey and each channel’s role in converting customers. 

    Cross-channel analytics lets you track every channel you use to convert customers, including :

    • Your website
    • Social media profiles
    • Email
    • Paid search
    • E-commerce
    • Retargeting campaigns

    Cross-channel analytics solves one of the most significant issues of cross-channel or multi-channel marketing efforts : measurement. 

    Research shows that only 16% of marketing tech stacks allow for accurate measurement of multi-channel initiatives across channels. 

    That’s a problem, given the staggering number of touchpoints in a typical buyer’s conversion path. However, it can be fixed using a cross-channel analytics approach that lets you measure the performance of every channel and assign a dollar value to its role in every conversion. 

    The difference between cross-channel analytics and multi-channel analytics

    Cross-channel analytics and multi-channel analytics sound very similar, but there’s one key difference you need to know. Multi-channel analytics measures the performance of several channels, but not necessarily all of them, nor the extent to which they work together to drive conversions. Conversely, cross-channel analytics measures the performance of all your marketing channels and how they work together. 

    What are the benefits of cross-channel analytics 

    Cross-channel analytics offers a lot of marketing and business benefits. Here are the ones marketing managers love most.

    Get a complete view of the customer journey

    Implementing a cross-channel analytics solution is the only way to get a complete view of your customer journey. 

    Cross-channel marketing analytics lets you see your customer journey in high definition, allowing you to build comprehensive customer profiles using data from multiple sources across every touchpoint

    A diagram showing how complex customer journeys are

    The result ? You get to understand how every customer behaves at every point of the customer journey, why they convert or leave your funnel, and which channels play the biggest role. 

    In short, you get to see why customers convert so you can learn how to convert more of them.

    Personalise the customer experience

    According to a McKinsey study, customers demand personalisation, and brands that excel at it generate 40% more revenue. Deliver the personalisation they desire and reap the benefits with cross-channel analytics. 

    When you understand the customer journey in detail, it becomes much easier to personalise your website and marketing efforts to their preferences and behaviours.

    Identify your most effective marketing channels

    Cross-channel marketing helps you understand your marketing efforts to see how every channel impacts conversions. 

    Take a look at the screenshot from Matomo below. Cross-channel analytics lets you get incredibly granular — we can see the number of conversions of organic search drives and the performance of individual search engines. 

    A Matomo screenshot showing channel attribution

    This makes it easy to identify your most effective marketing channels and allocate your resources appropriately. It also allows you to ask (and answer) which channels are the most effective.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Attribute conversions accurately 

    An attribution model decides how you assign credit for each customer conversion to different touchpoints on the customer journey. Without a cross-channel analytics solution, you’re stuck using a standard attribution model like first or last click. 

    These models will show you how customers first found your brand or which channel finally convinced them to convert, but it doesn’t help you understand the role all your channels played in the conversion. 

    Cross-channel analytics solves this attribution problem. Rather than attributing a conversion to the touchpoint that directly led to the sale, cross-channel data gives you the real picture and allows you to use multi-touch attribution to understand which touchpoints generate the most revenue.

    How to set up cross-channel analytics

    Now that you know what cross-channel analytics is and why you should use it, here’s how to set up your solution. 

    1. Determine your objectives

    Defining your marketing goals will help you build a more relevant and actionable cross-channel analytics solution. 

    If you want to improve marketing attribution, for example, you can choose a platform with that feature built-in. If you care about personalisation, you could choose a platform with A/B testing capabilities to measure the impact of your personalisation efforts. 

    1. Set relevant KPIs

    You’ll want to track relevant KPIs to measure the marketing effectiveness of each channel. Put top-of-the-funnel metrics aside and focus on conversion metrics

    These include :

    • Conversion rate
    • Average visit duration
    • Bounce rate
    1. Implement tracking and analytics tools

    Gathering customer data from every channel and centralising it in a single location is one of the biggest challenges of cross-channel analytics. Still, it’s made easier with the right tracking tool or analytics platform. 

    The trick is to choose a platform that lets you measure as many of your channels as possible in a single platform. With Matomo, for example, you can track search, paid search, social and email campaigns and your website analytics.

    1. Set up a multi-touch attribution model

    Now that you have all of your data in one place, you can set up a multi-touch attribution model that lets you understand the extent to which each marketing channel contributes to your overall success. 

    There are several attribution models to choose from, including :

    Image of six different attribution models

    Each model has benefits and drawbacks, so choosing the right model for your organisation can be tricky. Rather than take a wild guess, evaluate each model against your marketing objectives, sales length cycle and data availability.

    For example, if you want to focus on optimising customer acquisition costs, a model that prioritises earlier touchpoints will be better. If you care about conversions, you might try a time decay model. 

    1. Turn data into insights with reports

    One of the big benefits of choosing a tool like Matomo, which consolidates data in one place, is that it significantly speeds up and simplifies reporting.

    When all the data is stored in one platform, you don’t need to spend hours combing through your social media platforms and copying and pasting analytics data into a spreadsheet. It’s all there and ready for you to run reports.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    1. Take action

    There’s no point implementing a cross-channel analytics system if you aren’t going to take action. 

    But where should you start ?

    Optimising your budgets and prioritising marketing spend is a great starting point. Use your cross-channel insights to find your most effective marketing channels (they’re the ones that convert the most customers or have the highest ROI) and allocate more of your budget to them. 

    You can also optimise the channels that aren’t pulling their weight if social media is letting you down ; for example, experiment with tactics like social commerce that could drive more conversions. Alternatively, you could choose to stop investing entirely in these channels.

    Cross-channel analytics best practices

    If you already have a cross-channel analytics solution, take things to the next level with the following best practices. 

    Use a centralised solution to track everything

    Centralising your data in one analytics tool can streamline your marketing efforts and help you stay on top of your data. It won’t just save you from tabbing between different browsers or copying and pasting everything into a spreadsheet, but it can also make it easier to create reports. 

    Think about consumer privacy 

    If you are looking at a new cross-channel analytics tool, consider how it accounts for data privacy regulations in your area. 

    You’re going to be collecting a lot of data, so it’s important to respect their privacy wishes. 

    It’s best to choose a platform like Matomo that complies with the strictest privacy laws (CCPA, GDPR, etc.).

    Monitor data in real time

    So, you’ve got a holistic view of your marketing efforts by integrating all your channels into a single tool ?

    Great, now go further by monitoring the impact of your marketing efforts in real time.

    A screenshot of Matomo's real-time visitor log

    With a web analytics platform like Matomo, you can see who visits your site, what they do, and where they come from through features like the visits log report, which even lets you view individual user sessions. This lets you measure the impact of posting on a particular social channel or launching a new offer. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Reallocate marketing budgets based on performance

    When you track every channel, you can use a multi-touch attribution model like position-based or time-decay to give every channel the credit it deserves. But don’t just credit each channel ; turn your valuable insights into action. 

    Use cross-channel attribution analytics data to reallocate your marketing budget to the most profitable channels or spend time optimising the channels that aren’t pulling their weight. 

    Cross-channel analytics platforms to get started with 

    The marketing analytics market is huge. Mordor Intelligence valued it at $6.31 billion in 2024 and expects it to reach $11.54 billion by 2029. Many of these platforms offer cross-channel analytics, but few can track the impact of multiple marketing channels in one place. 

    So, rather than force you to trawl through confusing product pages, we’ve shortlisted three of the best cross-channel analytics solutions. 

    Matomo

    Screenshot example of the Matomo dashboard

    Matomo is a web analytics platform that lets you collect and centralise your marketing data while giving you 100% accurate data. That includes search, social, e-commerce, campaign tracking data and comprehensive website analytics.

    Better still, you get the necessary tools to turn those insights into action. Custom reporting lets you track and visualise the metrics that matter, while conversion optimisation tools like built-in A/B testing, heatmaps, session recordings and more let you test your theories. 

    Google Analytics

    A screenshot of Google Analytics 4 UI

    Google Analytics is the most popular and widely used tool on the market. The level of analysis and customisation you can do with it is impressive for a free tool. That includes tracking just about any event and creating reports from scratch. 

    Google Analytics provides some cross-channel marketing features and lets you track the impact of various channels, such as social and search, but there are a couple of drawbacks. 

    Privacy can be a concern because Google Analytics collects data from your customers for its own remarketing purposes. 

    It also uses data sampling to generate wider insights from a small subset of your data. This lack of accurate data reporting can cause you to generate false insights.

    With Google Analytics, you’ll also need to subscribe to additional tools to gain advanced insights into the user experience. So, consider that while this tool is free, you’ll need to pay for heatmaps, session recording and A/B testing tools to optimise effectively.

    Improvado

    A screenshot of Improvado's homepage

    Improvado is an analytics tool for sales and marketing teams that extracts thousands of metrics from hundreds of sources. It centralises data in data warehouses, from which you can create a range of marketing dashboards.

    While Improvado does have analytics capabilities, it is primarily an ETL (extraction, transform, load) tool for organisations that want to centralise all their data. That means marketers who aren’t familiar with data transformations may struggle to get their heads around the complexity of the platform.

    Make the most of cross-channel analytics with Matomo

    Cross-channel analytics is the only way to get a comprehensive view of your customer journey and understand how your channels work together to drive conversions.

    Then you’re dealing with so many channels and data ; keeping things as simple as possible is the key to success. That’s why over 1 million websites choose Matomo. 

    Our all-in-one analytics solution measures traditional web analytics, behavioural analytics, attribution and SEO, so you have 100% accurate data in one place. 

    Try it free for 21 days. No credit card required.

  • A Guide to Bank Customer Segmentation

    18 juillet 2024, par Erin

    Banking customers are more diverse, complex, and demanding than ever. As a result, banks have to work harder to win their loyalty, with 75% saying they would switch to a bank that better fits their needs.

    The problem is banking customers’ demands are increasingly varied amid economic uncertainties, increased competition, and generational shifts.

    If banks want to retain their customers, they can’t treat them all the same. They need a bank customer segmentation strategy that allows them to reach specific customer groups and cater to their unique demands.

    What is customer segmentation ?

    Customer segmentation divides a customer base into distinct groups based on shared characteristics or behaviours.

    This allows companies to analyse the behaviours and needs of different customer groups. Banks can use these insights to target segments with relevant marketing throughout the customer cycle, e.g., new customers, inactive customers, loyal customers, etc.

    You combine data points from multiple segmentation categories to create a customer segment. The most common customer segmentation categories include :

    • Demographic segmentation
    • Website activity segmentation
    • Geographic segmentation
    • Purchase history segmentation
    • Product-based segmentation
    • Customer lifecycle segmentation
    • Technographic segmentation
    • Channel preference segmentation
    • Value-based segmentation
    A chart with icons representing the different customer segmentation categories for banks

    By combining segmentation categories, you can create detailed customer segments. For example, high-value customers based in a particular market, using a specific product, and approaching the end of the lifecycle. This segment is ideal for customer retention campaigns, localised for their market and personalised to satisfy their needs.

    Browser type in Matomo

    Matomo’s privacy-centric web analytics solution helps you capture data from the first visit. Unlike Google Analytics, Matomo doesn’t use data sampling (more on this later) or AI to fill in data gaps. You get 100% accurate data for reliable insights and customer segmentation.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Why is customer segmentation important for banks ?

    Customer segmentation allows you to address the needs of specific groups instead of treating all of your customers the same. This has never been more important amid a surge in bank switching, with three in four customers ready to switch to a provider that better suits their needs.

    Younger customers are the most likely to switch, with 19% of 18-24 year olds changing their primary bank in the past year (PDF).

    Customer expectations are changing, driven by economic uncertainties, declining trust in traditional banking, and the rise of fintech. Even as economic pressures lift, banks need to catch up with the demands of maturing millennials, Gen Z, and future generations of banking customers.

    Switching is the new normal, especially for tech-savvy customers encouraged by an expanding world of digital banking options.

    To retain customers, banks need to know them better and understand how their needs change over time. Customer retention provides the insights banks need to understand these needs at a granular level and the means to target specific customer groups with relevant messages.

    At its core, customer segmentation is essential to banks for two key reasons :

    • Customer retention : Holding on to customers for longer by satisfying their personal needs.
    • Customer lifetime value : Maximising ongoing customer revenue through retention, purchase frequency, cross-selling, and upselling.

    Here are some actionable bank customer segmentation strategies that can achieve these two objectives :

    Prevent switching with segment analysis

    Use customer segmentation to prevent them from switching to rivals by knowing what they want from you. Analyse customer needs and how they change throughout the lifecycle. Third-party data reveals general trends, but what do your customers want ?

    A graph showing different customer segments and example data.

    Use first-party customer data and segmentation to go beyond industry trends. Know exactly what your customers want from you and how to deliver targeted messages to each segment — e.g., first-time homebuyers vs. retirement planners.

    Keep customers active with segment targeting

    Target customer segments to keep customers engaged and motivated. Create ultra-relevant marketing messages and deliver them with precision to distinct customer segments. Nurture customer motivation by continuing to address their problems and aspirations.

    Improve the quality of services and products

    Knowing your customers’ needs in greater detail allows you to adapt your products and messages to cater to the most important segments. Customers switch banks because they feel their needs are better met elsewhere. Prevent this by implementing customer segmentation insights into product development and marketing.

    Personalise customer experiences by layering segments

    Layer segments to create ultra-specific target customer groups for personalised services and marketing campaigns. For example, top-spending customers are one of your most important segments, but there’s only so much you can do with this. However, you can divide this group into even narrower target audiences by layering multiple segments.

    For example, segmenting top-spending customers by product type can create more relevant messaging. You can also segment recent activity and pinpoint specific usage segments, such as those with a recent drop in transactions.

    Now, you have a three-layered segment of high-spending customers who use specific products less often and whom you can target with re-engagement campaigns.

    Maximise customer lifetime value

    Bringing all of this together, customer segmentation helps you maximise customer lifetime value in several ways :

    • Prevent switching
    • Enhance engagement and motivation
    • Re-engage customers
    • Cross-selling, upselling
    • Personalised customer loyalty incentives

    The longer you retain customers, the more you can learn about them, and the more effective your lifetime value campaigns will be.

    Balancing bank customer segmentation with privacy and marketing regulations

    Of course, customer segmentation uses a lot of data, which raises important legal and ethical questions. First, you need to comply with data and privacy regulations, such as GDPR and CCPA. Second, you also have to consider the privacy expectations of your customers, who are increasingly aware of privacy issues and rising security threats targeting financial service providers.

    If you aim to retain and maximise customer value, respecting their privacy and protecting their data are non-negotiables.

    Regulators are clamping down on finance

    Regulatory scrutiny towards the finance industry is intensifying, largely driven by the rise of fintech and the growing threat of cyber attacks. Not only was 2023 a record-breaking year for finance security breaches but several compromises of major US providers “exposed shortcomings in the current supervisory framework and have put considerable public pressure on banking authorities to reevaluate their supervisory and examination programs” (Deloitte).

    Banks face some of the strictest consumer protections and marketing regulations, but the digital age creates new threats.

    In 2022, the Consumer Financial Protection Bureau (CFPB) warned that digital marketers must comply with finance consumer protections when targeting audiences. CFPB Director Rohit Chopra said : “When Big Tech firms use sophisticated behavioural targeting techniques to market financial products, they must adhere to federal consumer financial protection laws.”

    This couldn’t be more relevant to customer segmentation and the tools banks use to conduct it.

    Customer data in the hands of agencies and big tech

    Banks should pay attention to the words of CFPB Director Rohit Chopra when partnering with marketing agencies and choosing analytics tools. Digital marketing agencies are rarely experts in financial regulations, and tech giants like Google don’t have the best track record for adhering to them.

    Google is constantly in the EU courts over its data use. In 2022, the EU ruled that the previous version of Google Analytics violated EU privacy regulations. Google Analytics 4 was promptly released but didn’t resolve all the issues.

    Meanwhile, any company that inadvertently misuses Google Analytics is legally responsible for its compliance with data regulations.

    Banks need a privacy-centric alternative to Google Analytics

    Google’s track record with data regulation compliance is a big issue, but it’s not the only one. Google Analytics uses data sampling, which Google defines as the “practice of analysing a subset of data to uncover meaningful information from a larger data set.”

    This means Google Analytics places thresholds on how much of your data it analyses — anything after that is calculated assumptions. We’ve explained why this is such a problem before, and GA4 relies on data sampling even more than the previous version.

    In short, banks should question whether they can trust Google with their customer data and whether they can trust Google Analytics to provide accurate data in the first place. And they do. 80% of financial marketers say they’re concerned about ad tech bias from major providers like Google and Meta.

    Segmentation options in Matomo

    Matomo is the privacy-centric alternative to Google Analytics, giving you 100% data ownership and compliant web analytics. With no data sampling, Matomo provides 20-40% more data to help you make accurate, informed decisions. Get the data you need for customer segmentation without putting their data at risk.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Bank customer segmentation examples

    Now, let’s look at some customer segments you create and layer to target specific customer groups.

    Visit-based segmentation

    Visit segmentation filters audiences based on the pages they visit on your website and the behaviors they exhibit—for example, first-time visitors vs. returning visitors or landing page visitors vs. blog page visitors.

    If you look at HSBC’s website, you’ll see it is structured into several categories for key customer personas. One of its segments is international customers living in the US, so it has pages and resources expats, people working in the US, people studying in the US, etc. 

    A screenshot of HSBC's US website showing category pages for different customer personas

    By combining visit-based segmentation with ultra-relevant pages for specific target audiences, HSBC can track each group’s demand and interest and analyse their behaviours. It can determine which audiences are returning, which products they want, and which messages convert them.

    Demographic segmentation

    Demographic segmentation divides customers by attributes such as age, gender, and location. However, you can also combine these insights with other non-personal data to better understand specific audiences.

    For example, in Matomo, you can segment audiences based on the language of their browser, the country they’re visiting from, and other characteristics. So, in this case, HSBC could differentiate between visitors already residing in the US and those outside of the country looking for information on moving there.

    a screenshot of Matomo's location reporting

    It could determine which countries they’re visiting, which languages to localise for, and which networks to run ultra-relevant social campaigns on.

    Interaction-based segmentation

    Interaction-based segmentation uses events and goals to segment users based on their actions on your website. For example, you can segment audiences who visit specific URLs, such as a loan application page, or those who don’t complete an action, such as failing to complete a form.

    A screenshot of setting up goals in Matamo

    With events and goals set up, you can track the actions visitors complete before making purchases. You can monitor topical interests, page visits, content interactions, and pathways toward conversions, which feed into their customer journey.

    From here, you can segment customers based on their path leading up to their first purchase, follow-up purchases, and other actions.

    Purchase-based segmentation

    Purchase-based segmentation allows you to analyse the customer behaviours related to their purchase history and spending habits. For example, you can track the journey of repeat customers or identify first-time buyers showing interest in other products/services.

    You can implement these insights into your cross-selling and upselling campaigns with relevant messages designed to increase retention and customer lifetime value.

    Get reliable website analytics for your bank customer segmentation needs

    With customers switching in greater numbers, banks need to prioritise customer retention and lifetime value. Customer segmentation allows you to target specific customer groups and address their unique needs — the perfect strategy to stop them from moving to another provider.

    Quality, accurate data is the key ingredient of an effective bank customer segmentation strategy. Don’t accept data sampling from Google Analytics or any other tool that limits the amount of your own data you can access. Choose a web analytics tool like Matamo that unlocks the full potential of your website analytics to get the most out of bank customer segmentation.

    Matomo is trusted by over 1 million websites globally, including many banks, for its accuracy, compliance, and reliability. Discover why financial institutions rely on Matomo to meet their web analytics needs.

    Start collecting the insights you need for granular, layered segmentation — without putting your bank customer data at risk. Request a demo of Matomo now.