
Recherche avancée
Médias (1)
-
Rennes Emotion Map 2010-11
19 octobre 2011, par
Mis à jour : Juillet 2013
Langue : français
Type : Texte
Autres articles (89)
-
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...) -
Emballe médias : à quoi cela sert ?
4 février 2011, parCe plugin vise à gérer des sites de mise en ligne de documents de tous types.
Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ;
Sur d’autres sites (15979)
-
Revision eee904c9b9 : Adaptive mode search scheduling This commit enables an adaptive mode search ord
18 septembre 2014, par Jingning HanChanged Paths :
Modify /vp9/encoder/vp9_encoder.c
Modify /vp9/encoder/vp9_rd.h
Modify /vp9/encoder/vp9_rdopt.c
Modify /vp9/encoder/vp9_speed_features.c
Modify /vp9/encoder/vp9_speed_features.h
Adaptive mode search schedulingThis commit enables an adaptive mode search order scheduling scheme
in the rate-distortion optimization. It changes the compression
performance by -0.433% and -0.420% for derf and stdhd respectively.
It provides speed improvement for speed 3 :bus CIF 1000 kbps
24590 b/f, 35.513 dB, 7864 ms ->
24696 b/f, 35.491 dB, 7408 ms (6% speed-up)stockholm 720p 1000 kbps
8983 b/f, 35.078 dB, 65698 ms ->
8962 b/f, 35.054 dB, 60298 ms (8%)old_town_cross 720p 1000 kbps
11804 b/f, 35.666 dB, 62492 ms ->
11778 b/f, 35.609 dB, 56040 ms (10%)blue_sky 1080p 1500 kbps
57173 b/f, 36.179 dB, 77879 ms ->
57199 b/f, 36.131 dB, 69821 ms (10%)pedestrian_area 1080p 2000 kbps
74241 b/f, 41.105 dB, 144031 ms ->
74271 b/f, 41.091 dB, 133614 ms (8%)Change-Id : Iaad28cbc99399030fc5f9951eb5aa7fa633f320e
-
vaapi_encode_mjpeg : fix bad component id bug
7 juin 2019, par U. Artie Eoffvaapi_encode_mjpeg : fix bad component id bug
The compound literals assigned to "components"
only exist within the scope of the if/else
block (thanks Mark Thompson for the better
explanation).Thus, after this if/else block, "components"
ends up pointing to an arbitrary/undefined
array. With some compilers and depending on
optimization settings, these arbitrary values
may end up being the same value (i.e. 0 with
GNU GCC 9.x). Unfortunately, the GNU GCC
compiler, at least, never prints any warnings
about this.This patch fixes this issue by assigning the
constant arrays to local variables at function
scope and then pointing "components" to those
as necessary.Fixes #7915
Signed-off-by : U. Artie Eoff <ullysses.a.eoff@intel.com>
-
dnn : add openvino as one of dnn backend
25 mai 2020, par Guo, Yejundnn : add openvino as one of dnn backend
OpenVINO is a Deep Learning Deployment Toolkit at
https://github.com/openvinotoolkit/openvino, it supports CPU, GPU
and heterogeneous plugins to accelerate deep learning inferencing.Please refer to https://github.com/openvinotoolkit/openvino/blob/master/build-instruction.md
to build openvino (c library is built at the same time). Please add
option -DENABLE_MKL_DNN=ON for cmake to enable CPU path. The header
files and libraries are installed to /usr/local/deployment_tools/inference_engine/
with default options on my system.To build FFmpeg with openvion, take my system as an example, run with :
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :/usr/local/deployment_tools/inference_engine/lib/intel64/ :/usr/local/deployment_tools/inference_engine/external/tbb/lib/
$ ../ffmpeg/configure —enable-libopenvino —extra-cflags=-I/usr/local/deployment_tools/inference_engine/include/ —extra-ldflags=-L/usr/local/deployment_tools/inference_engine/lib/intel64
$ makeHere are the features provided by OpenVINO inference engine :
support more DNN model formats
It supports TensorFlow, Caffe, ONNX, MXNet and Kaldi by converting them
into OpenVINO format with a python script. And torth model
can be first converted into ONNX and then to OpenVINO format.see the script at https://github.com/openvinotoolkit/openvino/tree/master/model-optimizer/mo.py
which also does some optimization at model level.optimize at inference stage
It optimizes for X86 CPUs with SSE, AVX etc.It also optimizes based on OpenCL for Intel GPUs.
(only Intel GPU supported becuase Intel OpenCL extension is used for optimization)Signed-off-by : Guo, Yejun <yejun.guo@intel.com>
Signed-off-by : Pedro Arthur <bygrandao@gmail.com>