Recherche avancée

Médias (91)

Autres articles (53)

  • Supporting all media types

    13 avril 2011, par

    Unlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)

  • Dépôt de média et thèmes par FTP

    31 mai 2013, par

    L’outil MédiaSPIP traite aussi les média transférés par la voie FTP. Si vous préférez déposer par cette voie, récupérez les identifiants d’accès vers votre site MédiaSPIP et utilisez votre client FTP favori.
    Vous trouverez dès le départ les dossiers suivants dans votre espace FTP : config/ : dossier de configuration du site IMG/ : dossier des média déjà traités et en ligne sur le site local/ : répertoire cache du site web themes/ : les thèmes ou les feuilles de style personnalisées tmp/ : dossier de travail (...)

  • Qualité du média après traitement

    21 juin 2013, par

    Le bon réglage du logiciel qui traite les média est important pour un équilibre entre les partis ( bande passante de l’hébergeur, qualité du média pour le rédacteur et le visiteur, accessibilité pour le visiteur ). Comment régler la qualité de son média ?
    Plus la qualité du média est importante, plus la bande passante sera utilisée. Le visiteur avec une connexion internet à petit débit devra attendre plus longtemps. Inversement plus, la qualité du média est pauvre et donc le média devient dégradé voire (...)

Sur d’autres sites (6298)

  • Marketing Cohort Analysis : How To Do It (With Examples)

    12 janvier 2024, par Erin

    The better you understand your customers, the more effective your marketing will become. 

    The good news is you don’t need to run expensive focus groups to learn much about how your customers behave. Instead, you can run a marketing cohort analysis using data from your website analytics.

    A marketing cohort groups your users by certain traits and allows you to drill down to discover why they take the actions on your website they do. 

    In this article, we’ll explain what a marketing cohort analysis is, show you what you can achieve with this analytical technique and provide a step-by-step guide to pulling it off. 

    What is cohort analysis in marketing ?

    A marketing cohort analysis is a form of behavioural analytics where you analyse the behavioural patterns of users who share a similar trait to better understand their actions. 

    These shared traits could be anything like the date they signed up for your product, users who bought your service through a paid ad or email subscribers from the United Kingdom.

    It’s a fantastic way to improve your marketing efforts, allowing you to better understand complex user behaviours, personalise campaigns accordingly and improve your ROI. 

    You can run marketing analysis using an analytics platform like Google Analytics or Matomo. With these platforms, you can measure how cohorts perform using traffic, engagement and conversion metrics.

    An example of marketing cohort chart

    There are two types of cohort analysis : acquisition-based cohort analysis and behavioural-based cohort analysis.

    Acquisition-based cohort analysis

    An acquisition-based cohort divides users by the date they purchased your product or service and tracks their behaviour afterward. 

    For example, one cohort could be all the users who signed up for your product in November. Another could be the users who signed up for your product in October. 

    You could then run a cohort analysis to see how the behaviour of the two cohorts differed. 

    Did the November cohort show higher engagement rates, increased frequency of visits post-acquisition or quicker conversions compared to the October cohort ? Analysing these cohorts can help with refining marketing strategies, optimising user experiences and improving retention and conversion rates.

    As you can see from the example, acquisition-based cohorts are a great way to track the initial acquisition and how user behaviour evolves post-acquisition.

    Behavioural-based cohort analysis

    A behavioural-based cohort divides users by their actions on your site. That could be their bounce rate, the number of actions they took on your site, their average time on site and more.

    View of returning visitors cohort report in Matomo dashboard

    Behavioural cohort analysis gives you a much deeper understanding of user behaviour and how they interact with your website.

    What can you achieve with a marketing cohort analysis ?

    A marketing cohort analysis is a valuable tool that can help marketers and product teams achieve the following goals :

    Understand which customers churn and why

    Acquisition and behavioural cohort analyses help marketing teams understand when and why customers leave. This is one of the most common goals of a marketing cohort analysis. 

    Learn which customers are most valuable

    Want to find out which channels create the most valuable customers or what actions customers take that increase their loyalty ? You can use a cohort analysis to do just that. 

    For example, you may find out you retain users who signed up via direct traffic better than those that signed up from an ad campaign. 

    Discover how to improve your product

    You can even use cohort analysis to identify opportunities to improve your website and track the impact of your changes. For example, you could see how visitor behaviour changes after a website refresh or whether visitors who take a certain action make more purchases. 

    Find out how to improve your marketing campaign

    A marketing cohort analysis makes it easy to find out which campaigns generate the best and most profitable customers. For example, you can run a cohort analysis to determine which channel (PPC ads, organic search, social media, etc.) generates customers with the lowest churn rate. 

    If a certain ad campaign generates the low-churn customers, you can allocate a budget accordingly. Alternatively, if customers from another ad campaign churn quickly, you can look into why that may be the case and optimise your campaigns to improve them. 

    Measure the impact of changes

    You can use a behavioural cohort analysis to understand what impact changes to your website or product have on active users. 

    If you introduced a pricing page to your website, for instance, you could analyse the behaviour of visitors who interacted with that page compared to those who didn’t, using behavioural cohort analysis to gauge the impact of these website changes on engagemen or conversions.

    The problem with cohort analysis in Google Analytics

    Google Analytics is often the first platform marketers turn to when they want to run a cohort analysis. While it’s a free solution, it’s not the most accurate or easy to use and users often encounter various issues

    For starters, Google Analytics can’t process user visitor data if they reject cookies. This can lead to an inaccurate view of traffic and compromise the reliability of your insights.

    In addition, GA is also known for sampling data, meaning it provides a subset rather than the complete dataset. Without the complete view of your website’s performance, you might make the wrong decisions, leading to less effective campaigns, missed opportunities and difficulties in reaching marketing goals.

    How to analyse cohorts with Matomo

    Luckily, there is an alternative to Google Analytics. 

    As the leading open-source web analytics solution, Matomo offers a robust option for cohort analysis. With its 100% accurate data, thanks to the absence of sampling, and its privacy-friendly tracking, users can rely on the data without resorting to guesswork. It is a premium feature included with our Matomo Cloud or available to purchase on the Matomo Marketplace for Matomo On-Premise users.

    Below, we’ll show how you can run a marketing cohort analysis using Matomo.

    Set a goal

    Setting a goal is the first step in running a cohort analysis with any platform. Define what you want to achieve from your analysis and choose the metrics you want to measure. 

    For example, you may want to improve your customer retention rate over the first 90 days. 

    Define cohorts

    Next, create cohorts by defining segmentation criteria. As we’ve discussed above, this could be acquisition-based or behavioural. 

    Matomo makes it easy to define cohorts and create charts. 

    In the sidebar menu, click Visitors > Cohorts. You’ll immediately see Matomo’s standard cohort report (something like the one below).

    Marketing cohort by bounce rate of visitors in Matomo dashboard

    In the example above, we’ve created cohorts by bounce rate. 

    You can view cohorts by weekly, monthly or yearly periods using the date selector and change the metric using the dropdown. Other metrics you can analyse cohorts by include :

    • Unique visitors
    • Return visitors
    • Conversion rates
    • Revenue
    • Actions per visit

    Change the data selection to create your desired cohort, and Matomo will automatically generate the report. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Analyse your cohort chart

    Cohort charts can be intimidating initially, but they are pretty easy to understand and packed with insights. 

    Here’s an example of an acquisition-based cohort chart from Matomo looking at the percentage of returning visitors :

    An Image of a marketing cohort chart in Matomo Analytics

    Cohorts run vertically. The oldest cohort (visitors between February 13 – 19) is at the top of the chart, with the newest cohort (April 17 – 23) at the bottom. 

    The period of time runs horizontally — daily in this case. The cells show the corresponding value for the metric we’re plotting (the percentage of returning visitors). 

    For example, 98.69% of visitors who landed on your site between February 13 – 19, returned two weeks later. 

    Usually, running one cohort analysis isn’t enough to identify a problem or find a solution. That’s why comparing several cohort analyses or digging deeper using segmentation is important.

    Segment your cohort chart

    Matomo lets you dig deeper by segmenting each cohort to examine their behaviour’s specifics. You can do this from the cohort report by clicking the segmented visitor log icon in the relevant row.

    Segmented visit log in Matomo cohort report
    Segmented cohort visitor log in Matomo

    Segmenting cohorts lets you understand why users behave the way they do. For example, suppose you find that users you purchased on Black Friday don’t return to your site often. In that case, you may want to rethink your offers for next year to target an audience with potentially better customer lifetime value. 

    Start using Matomo for marketing cohort analysis

    A marketing cohort analysis can teach you a lot about your customers and the health of your business. But you need the right tools to succeed. 

    Matomo provides an effective and privacy-first way to run your analysis. You can create custom customer segments based on almost anything, from demographics and geography to referral sources and user behaviour. 

    Our custom cohort analysis reports and colour-coded visualisations make it easy to analyse cohorts and spot patterns. Best of all, the data is 100% accurate. Unlike other web analytics solution or cohort analysis tools, we don’t sample data. 

    Find out how you can use Matomo to run marketing cohort analysis by trialling us free for 21 days. No credit card required.

  • Anomalie #4562 : Suite #4468 : Unification des CSS pour les boutons et les icônes

    8 janvier 2021

    Bon, reprenons, il reste un dernier tour de manivelle à faire.
    En résumé, ça fait 3 points à traiter :

    1) Préfixer les variantes pour éviter les téléscopages comme suggéré par cedric

    2) Ajustements visuels pour améliorer l’affordance, le contraste et cie, cf. image dans le commentaire #53
    Pour arriver au plus proche de cette image, il manque une poignée de fonctions dans le traitement des couleurs : on a une fonction pour mettre une valeur de saturation, mais pas pour saturer ou désaturer relativement à la valeur d’origine (alors que pour la luminosité, on a bien le tryptique). Et une dernière pour changer l’opacité serait pas mal non plus.
    Je vais faire une PR à part pour ça (ça concerne Spip et le plugin dist à la fois).

    3) Enfin, une dernière chose qui me chiffone sur les icônes : je pense qu’il faudrait passer dès maintenant à des icônes symboliques plutôt que reprendre telles quelles les icônes de couleurs utilisées pour les filtres |icone_horizontale et |icone_verticale.
    Les boutons ont parfois des fonds de couleur, et dans certains les icônes sont difficile à dicerner, et dans l’ensemble ça fait un peu chargé.
    Attention je parle bien juste des boutons, on touche pas aux |icone_horizontale car elles ont toujours un fond blanc ou clair, et pour elles l’icône est l’élément principal donc c’est normal qu’elle soit bien visible.
    En revanche pour les boutons, les icônes sont optionnelles, elles ne sont là qu’en « support », donc ça me semble mieux qu’elles soient un peu en retrait.
    À noter que les variantes symboliques sont déjà visibles en blanc au survol, il suffit juste d’en faire des variantes foncées quoi.
    Nb : s’il y a une refonte de l’interface un jour, nulle doute qu’il y aura un truc un peu plus rôdé pour ces icônes symboliques (via une police fontface ou autre), et donc en attendant au moins on sera déjà alignés visuellement.

    Et ma foi avec ça, ça devrait le faire.
    J’hésitais : je continue dans une branche à part ou je commite dans le lard ?

  • Evolution #3953 : formulaire de date sur les rubriques

    12 février 2021, par RastaPopoulos ♥

    Dans tous les cas il me semble nécessaire de pouvoir agir sur les dates des objets, sachant qu’historiquement les dates des rubriques sont liées automatiquement à la date de leur dernier article, faudrait-il trouver une solution pour bloquer/débloquer cet automatisme ?

    1) Les dates des rubriques sont liés aux articles, mais il me semble que soit la doc n’est pas assez explicite, soit le code ne va pas jusqu’au bout (mais ça impliquerait possiblement des trop gros tests). En effet, la date des rubriques n’est pas liée vaguement à la date du contenu le plus récent publié dedans. :) C’est plus fourbement précis : c’est la date du dernier contenu dont le statut a été mis en publié pendant qu’il était dans cette rubrique. Et ça à défaut de changer le code pour l’instant, il faudrait au moins le dire moins sibyllin. Concrètement ça signifie que si on déplace un article (publié bien sûr) depuis une autre rubrique dedans après coup, avec une date plus récente, ça ne change rien à la date de la rubrique (dont le contenu a pourtant changé toute autant qu’en publiant direct depuis dedans). En théorie il faudrait que ça change en cascade la date de tous les parents quand on déplace un article (la rubrique de destination et toute la hiérarchie). Et possiblement d’autres cas de ce genre.

    2) Quoiqu’il en soit, même s’il y a un changement de date par défaut, je pense aussi qu’il faut pouvoir décider qu’on veut la changement manuellement après coup. Si on a une liste de rubriques "par date de contenu récent", on peut rien corriger actuellement si les dates ne vont pas. Là j’ai le cas après une migration WP par exemple.

    En attendant faudrait un mini plugin tout simple pour ajouter le form de date sur les rubriques comme le montre touti au début. Mais est-ce ça devrait pas être natif directement ?