
Recherche avancée
Médias (1)
-
La conservation du net art au musée. Les stratégies à l’œuvre
26 mai 2011
Mis à jour : Juillet 2013
Langue : français
Type : Texte
Autres articles (72)
-
Qualité du média après traitement
21 juin 2013, parLe bon réglage du logiciel qui traite les média est important pour un équilibre entre les partis ( bande passante de l’hébergeur, qualité du média pour le rédacteur et le visiteur, accessibilité pour le visiteur ). Comment régler la qualité de son média ?
Plus la qualité du média est importante, plus la bande passante sera utilisée. Le visiteur avec une connexion internet à petit débit devra attendre plus longtemps. Inversement plus, la qualité du média est pauvre et donc le média devient dégradé voire (...) -
Des sites réalisés avec MediaSPIP
2 mai 2011, parCette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page. -
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
Sur d’autres sites (7343)
-
Revision 30966 : eviter le moche ’doctype_ecrire’ lors de l’upgrade
17 août 2009, par fil@… — Logeviter le moche ’doctype_ecrire’ lors de l’upgrade
-
Decoding the h.264 stream from a COM port
18 mars, par PeterI would like to know if there is a reliable way to decode an H.264 NAL stream coming through a serial port using software.


So far, I have managed to decode a single frame using a python script. In this script, I first write the incoming data to a file, and when the end-of-frame marker 00_00_00_01 appears, I display the frame using ffplay.


import serial
import subprocess
import os
import time

ser = serial.Serial('COM3', 115200, timeout=1)
output_file = "output.264"

# Variable to store the ffplay process
ffplay_process = None

# Open the file for writing in binary mode
with open(output_file, "wb") as file:

 print("Writing bytes to output.264. Waiting for the end-of-frame marker 0x00000001.")

 buffer = bytearray()
 marker = b'\x00\x00\x00\x01'

 try:
 while True:
 if ser.in_waiting: # If there is data in the buffer
 data = ser.read(ser.in_waiting) # Read all available bytes
 buffer.extend(data)

 # Check if the end-of-frame marker is in the buffer
 while marker in buffer:
 index = buffer.index(marker) + len(marker) # Position after the marker
 frame = buffer[:index] # Extract the frame
 buffer = buffer[index:] # Keep the remaining data

 print(f"Frame recorded: {len(frame)} bytes")
 file.write(frame) # Write the frame to the file
 file.flush() # Force writing to disk

 # Close the ffplay window if it is already open
 if ffplay_process and ffplay_process.poll() is None:
 ffplay_process.terminate()
 ffplay_process.wait() # Wait for the process to terminate

 # Play the recorded frame, reopening the window
 ffplay_process = subprocess.Popen(["ffplay", "-f", "h264", "-i", output_file])

 except KeyboardInterrupt:
 print("\nRecording stopped.")
 finally:
 # Close the serial port and the ffplay process
 ser.close()



However, each time a new end-of-frame marker is detected, the ffplay window closes and reopens to show the next frame. It will flicker when transferring the video. Is there a way to display the frames in the same window for seamless playback when streaming video ?


Or is there a better approach or software that is more suited for this task ? I do not know where to start, so I will be glad for any hints.


-
Can't view and record graph at the same time using FFMpegWriter [closed]
7 juillet 2024, par Barkın ÖzerSo this code is used for graphing and logging sensor data coming from bluetooth ports. I wanted to add an function that will record the graph in mp4 format. In order to achieve this I used ffmpegWriter. The issue is while this code records the graph I can't view the graph at the same time.


import serial
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, FFMpegWriter
import openpyxl
from datetime import datetime

# Constants
GRAVITY = 9.81 # Standard gravity in m/s²

# Initialize serial connections to HC-06 devices
ser_x_accel = serial.Serial('COM4', 9600, timeout=1) # X-axis acceleration data
ser_y_angle = serial.Serial('COM11', 9600, timeout=1) # Y-axis angle data

# Initialize empty lists to store data
x_accel_data = []
y_angle_data = []
timestamps = []

# Initialize Excel workbook
wb = openpyxl.Workbook()
ws = wb.active
ws.title = "Sensor Data"
ws.append(["Timestamp", "X Acceleration (m/s²)", "Y Angle (degrees)"])

# Function to update the plot and log data
def update(frame):
 # Read data from serial connections
 line_x_accel = ser_x_accel.readline().decode('utf-8').strip()
 line_y_angle = ser_y_angle.readline().decode('utf-8').strip()
 
 try:
 # Parse and process X-axis acceleration data
 x_accel_g = float(line_x_accel) # Acceleration in g read from serial
 x_accel_ms2 = x_accel_g * GRAVITY # Convert from g to m/s²
 x_accel_data.append(x_accel_ms2)
 
 # Parse and process Y-axis angle data
 y_angle = float(line_y_angle)
 y_angle_data.append(y_angle)
 
 # Append timestamp
 timestamps.append(datetime.now())

 # Limit data points to show only the latest 100
 if len(x_accel_data) > 100:
 x_accel_data.pop(0)
 y_angle_data.pop(0)
 timestamps.pop(0)

 # Log data to Excel with timestamp
 timestamp_str = timestamps[-1].strftime("%H:%M:%S")
 ws.append([timestamp_str, x_accel_data[-1], y_angle_data[-1]])

 # Clear and update plots
 ax1.clear()
 ax1.plot(timestamps, x_accel_data, label='X Acceleration', color='b')
 ax1.legend(loc='upper left')
 ax1.set_ylim([-20, 20]) # Adjust based on expected acceleration range in m/s²
 ax1.set_title('Real-time X Acceleration Data')
 ax1.set_xlabel('Time')
 ax1.set_ylabel('Acceleration (m/s²)')
 ax1.grid(True)

 ax2.clear()
 ax2.plot(timestamps, y_angle_data, label='Y Angle', color='g')
 ax2.legend(loc='upper left')
 ax2.set_ylim([-180, 180])
 ax2.set_title('Real-time Y Angle Data')
 ax2.set_xlabel('Time')
 ax2.set_ylabel('Angle (degrees)')
 ax2.grid(True)

 # Update text boxes with latest values
 text_box.set_text(f'X Acceleration: {x_accel_data[-1]:.2f} m/s²')
 text_box2.set_text(f'Y Angle: {y_angle_data[-1]:.2f}°')
 
 # Save the workbook periodically (every 100 updates)
 if frame % 100 == 0:
 wb.save("sensor_data.xlsx")
 
 except ValueError:
 pass # Ignore lines that are not properly formatted

# Setup the plots
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))
text_box = ax1.text(0.05, 0.95, '', transform=ax1.transAxes, fontsize=12, verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))
text_box2 = ax2.text(0.05, 0.95, '', transform=ax2.transAxes, fontsize=12, verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))

# Animate the plots
ani = FuncAnimation(fig, update, interval=100) # Update interval of 100ms

# Save the animation as a video file
writer = FFMpegWriter(fps=10, metadata=dict(artist='Me'), bitrate=1800)
ani.save("sensor_data.mp4", writer=writer)

plt.tight_layout()
plt.show()

# Save the workbook at the end of the session
wb.save("sensor_data.xlsx")




I tried using OpenCV to record the graph but then I didn't even got any recording. I think solving this issue with my original code would be a better approach.