Recherche avancée

Médias (5)

Mot : - Tags -/open film making

Autres articles (99)

  • Personnaliser en ajoutant son logo, sa bannière ou son image de fond

    5 septembre 2013, par

    Certains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;

  • Ecrire une actualité

    21 juin 2013, par

    Présentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
    Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
    Vous pouvez personnaliser le formulaire de création d’une actualité.
    Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (7023)

  • I want to print HLS files using ffmpeg in aws lambda (python)

    14 avril 2021, par 최우선

    I implemented it through the link(https://aws.amazon.com/ko/blogs/media/processing-user-generated-content-using-aws-lambda-and-ffmpeg/) here, and it works well.

    


    s3_source_bucket = event['Records'][0]['s3']['bucket']['name']
s3_source_key = event['Records'][0]['s3']['object']['key']

s3_source_basename = os.path.splitext(os.path.basename(s3_source_key))[0]
s3_destination_filename = s3_source_basename + ".m3u8"

s3_client = boto3.client('s3')
s3_source_signed_url = s3_client.generate_presigned_url('get_object',
    Params={'Bucket': s3_source_bucket, 'Key': s3_source_key},
    ExpiresIn=SIGNED_URL_TIMEOUT)


ffmpeg_cmd = "/opt/bin/ffmpeg -i \"" + s3_source_signed_url + "\" -codec: copy -start_number 0 -hls_time 10 -hls_list_size 0 -f hls -"
command1 = shlex.split(ffmpeg_cmd)
p1 = subprocess.run(command1, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

resp = s3_client.put_object(Body=p1.stdout, Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)


    


    However, the actual output through ffmpeg is multiple files. For example test.m3u8, test0.ts, test1.ts .....

    


    But when I print p1.stdout, it looks like multiple files (test.m3u8,test0.ts....) are merged into one file.

    


    Is there a way to get the actual output multiple files (test.m3u8,test0.ts......) from p1.stdout ? Please help.

    


  • ffmpeg file conversion AWS Lambda

    10 avril 2021, par eartoolbox

    I want a .webm file to be converted to a .wav file after it hits my S3 bucket. I followed this tutorial and tried to adapt it from my use case using the .webm -> .wav ffmpeg command described here.

    


    My AWS Lambda function generally works, in that when my .webm file hits the source bucket, it is converted to .wav and ends up in the destination bucket. However, the resulting file .wav is always 0 bytes (though the .webm not, including the appropriate audio). Did I adapt the code wrong ? I only changed the ffmpeg_cmd line from the first link.

    


    import json
import os
import subprocess
import shlex
import boto3

S3_DESTINATION_BUCKET = "hmtm-out"
SIGNED_URL_TIMEOUT = 60

def lambda_handler(event, context):

    s3_source_bucket = event['Records'][0]['s3']['bucket']['name']
    s3_source_key = event['Records'][0]['s3']['object']['key']

    s3_source_basename = os.path.splitext(os.path.basename(s3_source_key))[0]
    s3_destination_filename = s3_source_basename + ".wav"

    s3_client = boto3.client('s3')
    s3_source_signed_url = s3_client.generate_presigned_url('get_object',
        Params={'Bucket': s3_source_bucket, 'Key': s3_source_key},
        ExpiresIn=SIGNED_URL_TIMEOUT)
    
    ffmpeg_cmd = "/opt/bin/ffmpeg -i \"" + s3_source_signed_url + "\" -c:a pcm_f32le " + s3_destination_filename + " -"
    
    
    command1 = shlex.split(ffmpeg_cmd)
    p1 = subprocess.run(command1, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    resp = s3_client.put_object(Body=p1.stdout, Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)

    return {
        'statusCode': 200,
        'body': json.dumps('Processing complete successfully')
    }
 


    


  • ffmpeg file conversion AWS Lamda

    10 avril 2021, par eartoolbox

    I want a .webm file to be converted to a .wav file after it hits my S3 bucket. I followed this tutorial and tried to adapt it from my use case using the .webm -> .wav ffmpeg command described here.

    


    My AWS Lambda function generally works, in that when my .webm file hits the source bucket, it is converted to .wav and ends up in the destination bucket. However, the resulting file .wav is always 0 bytes (though the .webm not, including the appropriate audio). Did I adapt the code wrong ? I only changed the ffmpeg_cmd line from the first link.

    


    import json
import os
import subprocess
import shlex
import boto3

S3_DESTINATION_BUCKET = "hmtm-out"
SIGNED_URL_TIMEOUT = 60

def lambda_handler(event, context):

    s3_source_bucket = event['Records'][0]['s3']['bucket']['name']
    s3_source_key = event['Records'][0]['s3']['object']['key']

    s3_source_basename = os.path.splitext(os.path.basename(s3_source_key))[0]
    s3_destination_filename = s3_source_basename + ".wav"

    s3_client = boto3.client('s3')
    s3_source_signed_url = s3_client.generate_presigned_url('get_object',
        Params={'Bucket': s3_source_bucket, 'Key': s3_source_key},
        ExpiresIn=SIGNED_URL_TIMEOUT)
    
    ffmpeg_cmd = "/opt/bin/ffmpeg -i \"" + s3_source_signed_url + "\" -c:a pcm_f32le " + s3_destination_filename + " -"
    
    
    command1 = shlex.split(ffmpeg_cmd)
    p1 = subprocess.run(command1, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    resp = s3_client.put_object(Body=p1.stdout, Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)

    return {
        'statusCode': 200,
        'body': json.dumps('Processing complete successfully')
    }