Recherche avancée

Médias (91)

Autres articles (88)

  • Qu’est ce qu’un masque de formulaire

    13 juin 2013, par

    Un masque de formulaire consiste en la personnalisation du formulaire de mise en ligne des médias, rubriques, actualités, éditoriaux et liens vers des sites.
    Chaque formulaire de publication d’objet peut donc être personnalisé.
    Pour accéder à la personnalisation des champs de formulaires, il est nécessaire d’aller dans l’administration de votre MediaSPIP puis de sélectionner "Configuration des masques de formulaires".
    Sélectionnez ensuite le formulaire à modifier en cliquant sur sont type d’objet. (...)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 is the first MediaSPIP stable release.
    Its official release date is June 21, 2013 and is announced here.
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • MediaSPIP Player : les contrôles

    26 mai 2010, par

    Les contrôles à la souris du lecteur
    En plus des actions au click sur les boutons visibles de l’interface du lecteur, il est également possible d’effectuer d’autres actions grâce à la souris : Click : en cliquant sur la vidéo ou sur le logo du son, celui ci se mettra en lecture ou en pause en fonction de son état actuel ; Molette (roulement) : en plaçant la souris sur l’espace utilisé par le média (hover), la molette de la souris n’exerce plus l’effet habituel de scroll de la page, mais diminue ou (...)

Sur d’autres sites (7521)

  • ffmpeg extract multiple frames from single input

    10 octobre 2023, par Andrew Still

    I'm trying to dynamically extract multiple different frames from single video input. So the command I'm calling looking like this

    


    ffmpeg -loglevel debug -hide_banner -t 13.269541 -y -ss 0 -i "input-s3-url" -ss 13.269541 -i "same-input-s3-url" -map 0:v -vframes 1 /tmp/ca4cd7a3159743938c5362c171ea2cae.0.png -map 1:v -vframes 1 /tmp/ca4cd7a3159743938c5362c171ea2cae.13.269541.png


    


    It works and everything is good, until I deploy it to lambda. Even though I'm using 10gb of RAM it still failing with error. Locally it works like a charm but not on lambda. I'm not sure what the problem here but i'm regularly (not always) getting SIGSEGV

    


    enter image description here

    


    Double-checked memory usage and it's doesn't look like a reason, but I'm not sure how correct this number

    


    enter image description here

    


    I'm think maybe it's because it's making requests for each input, at least that's what I saw in debug mode, but still have no idea what's the problem here, would appreciate any suggestions/optimizations/help. Thanks

    


    ffmpeg added on lambda using this layer - https://serverlessrepo.aws.amazon.com/applications/us-east-1/145266761615/ffmpeg-lambda-layer

    


  • FFmpeg transcode GIF into Mp4 and Mp4 to AVI using GPU

    9 octobre 2023, par Cristian

    I'm trying to convert GIF animated to mp4 and mp4 to AVI with FFmpeg.

    


    I started to use just the CPU, but I have to process millions of GIFs/mp4 content pieces. So, I started to have a lot of errors processing them, and it ended as a bottleneck. Therefore, I'm trying to use GPU to process the videos.

    


    Converting GIF to mp4 with CPU, I run the following command :

    


    ffmpeg -i animated.gif -movflags faststart -pix_fmt yuv420p -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" video.mp4


    


    Using the GPU I'm trying the following :

    


    ffmpeg
  -y
  -hwaccel nvdec
  -hwaccel_output_format cuda
  -i gifInputPath
  -threads 1
  -filter_threads 1
  -c:v h264_nvenc
  -vf hwupload_cuda,scale_cuda=-2:320:240:format=yuv420p
  -gpu 0
   mp4VideoPath


    


    The above command generates an exit status 1.

    


    The following is the dmesg command log

    


    Converting mp4 videos to AVI videos I'm running the following command

    


    ffmpeg
-i videoInputPath
-vcodec rawvideo
-pix_fmt yuv420p
-acodec pcm_s16le
-ar 44100
-ac 2
-s 320x240
-r 4
-f avi
aviOutputVideoPath


    


    For GPU I tried :

    


    ffmpeg
 -y
 -hwaccel cuda
 -hwaccel_output_format cuda
 -i videoInputPath
 -threads 1
 -filter_threads 1
 -c:a pcm_s16le
 -ac 2
 -ar 44100
 -c:v h264_nvenc
 -vf hwupload_cudascale_cuda=-2:320:240:format=yuv420p
 -r 4
 -f avi
 -gpu 0
 aviOutputVideoPath


    


    The following is the dmseg output is log

    


      

    1. What should be the best command for converting the GIF into Mp4 and Mp4 into AVI based on CPU configuration using the GPU(Amazon Nvidia t4) for best performance, low CPU, and moderated GPU consumption ?

      


    2. 


    3. What are the best suggestions to Process these content pieces concurrently using GPU ?

      


    4. 


    


    Note : I'm using Golang to execute the FFmpeg commands.

    


  • AWS Lambda : "Unzipped size must be smaller than 106534017 bytes" after adding single file

    17 septembre 2023, par leon

    When trying to deploy my lambdas using AWS through the serverless framework I had no problems until I tried adding the ffmpeg binary.

    


    Now the ffmpeg binaries I have tried to add have ranged from 26 mb to 50 mb. Whichever I add, I get the following error :

    


    UPDATE_FAILED: WhatsappDocumentHandlerLambdaFunction (AWS::Lambda::Function)
Resource handler returned message: "Unzipped size must be smaller than 106534017 bytes (Service: Lambda, Status Code: 400, Request ID: ...)" (RequestToken: ..., HandlerErrorCode: InvalidRequest)


    


    The problem is that I did not add the file to this function. I added it to a completely different one.

    


    I have tried the following things :

    


    


    When trying every single one of these options I get the UPDATE_FAILED error in a different function that surely is not too big.

    


    I know I can deploy using a docker image but why complicate things with docker images when it should work ?

    


    I am very thankful for any ideas.