Recherche avancée

Médias (1)

Mot : - Tags -/MediaSPIP

Autres articles (63)

  • Encodage et transformation en formats lisibles sur Internet

    10 avril 2011

    MediaSPIP transforme et ré-encode les documents mis en ligne afin de les rendre lisibles sur Internet et automatiquement utilisables sans intervention du créateur de contenu.
    Les vidéos sont automatiquement encodées dans les formats supportés par HTML5 : MP4, Ogv et WebM. La version "MP4" est également utilisée pour le lecteur flash de secours nécessaire aux anciens navigateurs.
    Les documents audios sont également ré-encodés dans les deux formats utilisables par HTML5 :MP3 et Ogg. La version "MP3" (...)

  • Submit bugs and patches

    13 avril 2011

    Unfortunately a software is never perfect.
    If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
    If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
    You may also (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

Sur d’autres sites (8107)

  • VP8 : a retrospective

    13 juillet 2010, par Dark Shikari — DCT, speed, VP8

    I’ve been working the past few weeks to help finish up the ffmpeg VP8 decoder, the first community implementation of On2′s VP8 video format. Now that I’ve written a thousand or two lines of assembly code and optimized a good bit of the C code, I’d like to look back at VP8 and comment on a variety of things — both good and bad — that slipped the net the first time, along with things that have changed since the time of that blog post.

    These are less-so issues related to compression — that issue has been beaten to death, particularly in MSU’s recent comparison, where x264 beat the crap out of VP8 and the VP8 developers pulled a Pinocchio in the developer comments. But that was expected and isn’t particularly interesting, so I won’t go into that. VP8 doesn’t have to be the best in the world in order to be useful.

    When the ffmpeg VP8 decoder is complete (just a few more asm functions to go), we’ll hopefully be able to post some benchmarks comparing it to libvpx.

    1. The spec, er, I mean, bitstream guide.

    Google has reneged on their claim that a spec existed at all and renamed it a “bitstream guide”. This is probably after it was found that — not merely was it incomplete — but at least a dozen places in the spec differed wildly from what was actually in their own encoder and decoder software ! The deblocking filter, motion vector clamping, probability tables, and many more parts simply disagreed flat-out with the spec. Fortunately, Ronald Bultje, one of the main authors of the ffmpeg VP8 decoder, is rather skilled at reverse-engineering, so we were able to put together a matching implementation regardless.

    Most of the differences aren’t particularly important — they don’t have a huge effect on compression or anything — but make it vastly more difficult to implement a “working” VP8 decoder, or for that matter, decide what “working” really is. For example, Google’s decoder will, if told to “swap the ALT and GOLDEN reference frames”, overwrite both with GOLDEN, because it first sets GOLDEN = ALT, and then sets ALT = GOLDEN. Is this a bug ? Or is this how it’s supposed to work ? It’s hard to tell — there isn’t a spec to say so. Google says that whatever libvpx does is right, but I doubt they intended this.

    I expect a spec will eventually be written, but it was a bit obnoxious of Google — both to the community and to their own developers — to release so early that they didn’t even have their own documentation ready.

    2. The TM intra prediction mode.

    One thing I glossed over in the original piece was that On2 had added an extra intra prediction mode to the standard batch that H.264 came with — they replaced Planar with “TM pred”. For i4x4, which didn’t have a Planar mode, they just added it without replacing an old one, resulting in a total of 10 modes to H.264′s 9. After understanding and writing assembly code for TM pred, I have to say that it is quite a cool idea. Here’s how it works :

    1. Let us take a block of size 4×4, 8×8, or 16×16.

    2. Define the pixels bordering the top of this block (starting from the left) as T[0], T[1], T[2]…

    3. Define the pixels bordering the left of this block (starting from the top) as L[0], L[1], L[2]…

    4. Define the pixel above the top-left of the block as TL.

    5. Predict every pixel <X,Y> in the block to be equal to clip3( T[X] + L[Y] – TL, 0, 255).

    It’s effectively a generalization of gradient prediction to the block level — predict each pixel based on the gradient between its top and left pixels, and the topleft. According to the VP8 devs, it’s chosen by the encoder quite a lot of the time, which isn’t surprising ; it seems like a pretty good idea. As just one more intra pred mode, it’s not going to do magic for compression, but it’s a cool idea and elegantly simple.

    3. Performance and the deblocking filter.

    On2 advertised for quite some that VP8′s goal was to be significantly faster to decode than H.264. When I saw the spec, I waited for the punchline, but apparently they were serious. There’s nothing wrong with being of similar speed or a bit slower — but I was rather confused as to the fact that their design didn’t match their stated goal at all. What apparently happened is they had multiple profiles of VP8 — high and low complexity profiles. They marketed the performance of the low complexity ones while touting the quality of the high complexity ones, a tad dishonest. More importantly though, practically nobody is using the low complexity modes, so anyone writing a decoder has to be prepared to handle the high complexity ones, which are the default.

    The primary time-eater here is the deblocking filter. VP8, being an H.264 derivative, has much the same problem as H.264 does in terms of deblocking — it spends an absurd amount of time there. As I write this post, we’re about to finish some of the deblocking filter asm code, but before it’s committed, up to 70% or more of total decoding time is spent in the deblocking filter ! Like H.264, it suffers from the 4×4 transform problem : a 4×4 transform requires a total of 8 length-16 and 8 length-8 loopfilter calls per macroblock, while Theora, with only an 8×8 transform, requires half that.

    This problem is aggravated in VP8 by the fact that the deblocking filter isn’t strength-adaptive ; if even one 4×4 block in a macroblock contains coefficients, every single edge has to be deblocked. Furthermore, the deblocking filter itself is quite complicated ; the “inner edge” filter is a bit more complex than H.264′s and the “macroblock edge” filter is vastly more complicated, having two entirely different codepaths chosen on a per-pixel basis. Of course, in SIMD, this means you have to do both and mask them together at the end.

    There’s nothing wrong with a good-but-slow deblocking filter. But given the amount of deblocking one needs to do in a 4×4-transform-based format, it might have been a better choice to make the filter simpler. It’s pretty difficult to beat H.264 on compression, but it’s certainly not hard to beat it on speed — and yet it seems VP8 missed a perfectly good chance to do so. Another option would have been to pick an 8×8 transform instead of 4×4, reducing the amount of deblocking by a factor of 2.

    And yes, there’s a simple filter available in the low complexity profile, but it doesn’t help if nobody uses it.

    4. Tree-based arithmetic coding.

    Binary arithmetic coding has become the standard entropy coding method for a wide variety of compressed formats, ranging from LZMA to VP6, H.264 and VP8. It’s simple, relatively fast compared to other arithmetic coding schemes, and easy to make adaptive. The problem with this is that you have to come up with a method for converting non-binary symbols into a list of binary symbols, and then choosing what probabilities to use to code each one. Here’s an example from H.264, the sub-partition mode symbol, which is either 8×8, 8×4, 4×8, or 4×4. encode_decision( context, bit ) writes a binary decision (bit) into a numbered context (context).

    8×8 : encode_decision( 21, 0 ) ;

    8×4 : encode_decision( 21, 1 ) ; encode_decision( 22, 0 ) ;

    4×8 : encode_decision( 21, 1 ) ; encode_decision( 22, 1 ) ; encode_decision( 23, 1 ) ;

    4×4 : encode_decision( 21, 1 ) ; encode_decision( 22, 1 ) ; encode_decision( 23, 0 ) ;

    As can be seen, this is clearly like a Huffman tree. Wouldn’t it be nice if we could represent this in the form of an actual tree data structure instead of code ? On2 thought so — they designed a simple system in VP8 that allowed all binarization schemes in the entire format to be represented as simple tree data structures. This greatly reduces the complexity — not speed-wise, but implementation-wise — of the entropy coder. Personally, I quite like it.

    5. The inverse transform ordering.

    I should at some point write a post about common mistakes made in video formats that everyone keeps making. These are not issues that are patent worries or huge issues for compression — just stupid mistakes that are repeatedly made in new video formats, probably because someone just never asked the guy next to him “does this look stupid ?” before sticking it in the spec.

    One common mistake is the problem of transform ordering. Every sane 2D transform is “separable” — that is, it can be done by doing a 1D transform vertically and doing the 1D transform again horizontally (or vice versa). The original iDCT as used in JPEG, H.263, and MPEG-1/2/4 was an “idealized” iDCT — nobody had to use the exact same iDCT, theirs just had to give very close results to a reference implementation. This ended up resulting in a lot of practical problems. It was also slow ; the only way to get an accurate enough iDCT was to do all the intermediate math in 32-bit.

    Practically every modern format, accordingly, has specified an exact iDCT. This includes H.264, VC-1, RV40, Theora, VP8, and many more. Of course, with an exact iDCT comes an exact ordering — while the “real” iDCT can be done in any order, an exact iDCT usually requires an exact order. That is, it specifies horizontal and then vertical, or vertical and then horizontal.

    All of these transforms end up being implemented in SIMD. In SIMD, a vertical transform is generally the only option, so a transpose is added to the process instead of doing a horizontal transform. Accordingly, there are two ways to do it :

    1. Transpose, vertical transform, transpose, vertical transform.

    2. Vertical transform, transpose, vertical transform, transpose.

    These may seem to be equally good, but there’s one catch — if the transpose is done first, it can be completely eliminated by merging it into the coefficient decoding process. On many modern CPUs, particularly x86, transposes are very expensive, so eliminating one of the two gives a pretty significant speed benefit.

    H.264 did it way 1).

    VC-1 did it way 1).

    Theora (inherited from VP3) did it way 1).

    But no. VP8 has to do it way 2), where you can’t eliminate the transpose. Bah. It’s not a huge deal ; probably only 1-2% overall at most speed-wise, but it’s just a needless waste. What really bugs me is that VP3 got it right — why in the world did they screw it up this time around if they got it right beforehand ?

    RV40 is the other modern format I know that made this mistake.

    (NB : You can do transforms without a transpose, but it’s generally not worth it unless the intermediate needs 32-bit math, as in the case of the “real” iDCT.)

    6. Not supporting interlacing.

    THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU.

    Interlacing was the scourge of H.264. It weaseled its way into every nook and cranny of the spec, making every decoder a thousand lines longer. H.264 even included a highly complicated — and effective — dedicated interlaced coding scheme, MBAFF. The mere existence of MBAFF, despite its usefulness for broadcasters and others still stuck in the analog age with their 1080i, 576i , and 480i content, was a blight upon the video format.

    VP8 has once and for all avoided it.

    And if anyone suggests adding interlaced support to the experimental VP8 branch, find a straightjacket and padded cell for them before they cause any real damage.

  • Linux Media Player Survey Circa 2001

    2 septembre 2010, par Multimedia Mike — General

    Here’s a document I scavenged from my archives. It was dated September 1, 2001 and I now publish it 9 years later. It serves as sort of a time capsule for the state of media player programs at the time. Looking back on this list, I can’t understand why I couldn’t find MPlayer while I was conducting this survey, especially since MPlayer is the project I eventually started to work for a few months after writing this piece.

    For a little context, I had been studying multimedia concepts and tech for a year and was itching to get my hands dirty with practical multimedia coding. But I wanted to tackle what I perceived as unsolved problems– like playback of proprietary codecs. I didn’t want to have to build a new media playback framework just to start working on my problems. So I surveyed the players available to see which ones I could plug into and use as a testbed for implementing new decoders.

    Regarding Real Player, I wrote : “We’re trying to move away from the proprietary, closed-source “solutions”. Heh. Was I really an insufferable open source idealist back in the day ?

    Anyway, here’s the text with some Where are they now ? commentary [in brackets] :


    Towards an All-Inclusive Media Playing Solution for Linux

    I don’t feel that the media playing solutions for Linux set their sights high enough, even though they do tend to be quite ambitious.

    I want to create a media player for Linux that can open a file, figure out what type of file it is (AVI, MOV, etc.), determine the compression algorithms used to encode the audio and video chunks inside (MPEG, Cinepak, Sorenson, etc.) and replay the file using the best audio, video, and CPU facilities available on the computer.

    Video and audio playback is a solved problem on Linux ; I don’t wish to solve that problem again. The problem that isn’t solved is reliance on proprietary multimedia solutions through some kind of WINE-like layer in order to decode compressed multimedia files.

    Survey of Linux solutions for decoding proprietary multimedia
    updated 2001-09-01

    AVI Player for XMMS
    This is based on Avifile. All the same advantages and limitations apply.
    [Top Google hit is a Freshmeat page that doesn’t indicate activity since 2001-2002.]

    Avifile
    This player does a great job at taking apart AVI and ASF files and then feeding the compressed chunks of multimedia data through to the binary Win32 decoders.

    The program is written in C++ and I’m not very good at interpreting that kind of code. But I’m learning all over again. Examining the object hierarchy, it appears that the designers had the foresight to include native support for decoders that are compiled into the program from source code. However, closer examination reveals that there is support for ONE source decoder and that’s the “decoder” for uncompressed data. Still, I tried to manipulate this routine to accept and decode data from other codecs but no dice. It’s really confounding. The program always crashes when I feed non-uncompressed data through the source decoder.
    [Lives at http://avifile.sourceforge.net/ ; not updated since 2006.]

    Real Player
    There’s not much to do with this since it is closed source and proprietary. Even though there is a plugin architecture, that’s not satisfactory. We’re trying to move away from the proprietary, closed-source “solutions”.
    [Still kickin’ with version 11.]

    XAnim
    This is a well-established Unix media player. To his credit, the author does as well as he can with the resources he has. In other words, he supports the non-proprietary video codecs well, and even has support for some proprietary video codecs through binary-only decoders.

    The source code is extremely difficult to work with as the author chose to use the X coding format which I’ve never seen used anywhere else except for X header files. The infrastructure for extending the program and supporting other codecs and file formats is there, I suppose, but I would have to wrap my head around the coding style. Maybe I can learn to work past that. The other thing that bothers me about this program is the decoding approach : It seems that each video decoder includes routines to decompress the multimedia data into every conceivable RGB and YUV output format. This seems backwards to me ; it seems better to have one decoder function that decodes the data into its native format it was compressed from (e.g., YV12 for MPEG data) and then pass that data to another layer of the program that’s in charge of presenting the data and possibly converting it if necessary. This layer would encompass highly-optimized software conversion routines including special CPU-specific instructions (e.g., MMX and SSE) and eliminate the need to place those routines in lots of other routines. But I’m getting ahead of myself.
    [This one was pretty much dead before I made this survey, the most recent update being in 1999. Still, we owe it much respect as the granddaddy of Unix multimedia playback programs.]

    Xine
    This seems like a promising program. It was originally designed to play MPEGs from DVDs. It can also play MPEG files on a hard drive and utilizes the Xv extensions for hardware YUV playback. It’s also supposed to play AVI files using the same technique as Avifile but I have never, ever gotten it to work. If an AVI file has both video and sound, the binary video decoder can’t decode any frames. If the AVI file has video and no sound, the program gets confused and crashes, as far as I can tell.

    Still, it’s promising, and I’ve been trying to work around these crashes. It doesn’t yet have the type of modularization I’d like to see. Right now, it tailored to suit MPEG playback and AVI playback is an afterthought. Still, it appears to have a generalized interface for dropping in new file demultiplexers.

    I tried to extend the program for supporting source decoders by rewriting w32codec.c from scratch. I’m not having a smooth time of it so far. I’m able to perform some manipulations on the output window. However, I can’t get the program to deal with an RGB image format. It has trouble allocating an RGB surface with XvShmCreateImage(). This isn’t suprising, per my limited knowledge of X which is that Xv applies to YUV images, but it could also apply to RGB images as well. Anyway, the program should be able to fall back on regular RGB pixmaps if that Xv call fails.

    Right now, this program is looking the most promising. It will take some work to extend the underlying infrastructure, but it seems doable since I know C quite well and can understand the flow of this program, as opposed to Avifile and its C++. The C code also compiles about 10 times faster.
    [My home project for many years after a brief flirtation with MPlayer. It is still alive ; its latest release was just a month ago.]

    XMovie
    This library is a Quicktime movie player. I haven’t looked at it too extensively yet, but I do remember looking at it at one point and reading the documentation that said it doesn’t support key frames. Still, I should examine it again since they released a new version recently.
    [Heroine Virtual still puts out some software but XMovie has not been updated since 2005.]

    XMPS
    This program compiles for me, but doesn’t do much else. It can play an MP3 file. I have been able to get MPEG movies to play through it, but it refuses to show the full video frame, constricting it to a small window (obviously a bug).
    [This project is hosted on SourceForge and is listed with a registration date of 2003, well after this survey was made. So the project obviously lived elsewhere in 2001. Meanwhile, it doesn’t look like any files ever made it to SF for hosting.]

    XTheater
    I can’t even get this program to compile. It’s supposed to be an MPEG player based on SMPEG. As such, it probably doesn’t hold much promise for being easily extended into a general media player.
    [Last updated in 2002.]

    GMerlin
    I can’t get this to compile yet. I have a bug report in to the dev group.
    [Updated consistently in the last 9 years. Last update was in February of this year. I can’t find any record of my bug report, though.]

  • VP8 : a retrospective

    13 juillet 2010, par Dark Shikari — DCT, VP8, speed

    I’ve been working the past few weeks to help finish up the ffmpeg VP8 decoder, the first community implementation of On2′s VP8 video format. Now that I’ve written a thousand or two lines of assembly code and optimized a good bit of the C code, I’d like to look back at VP8 and comment on a variety of things — both good and bad — that slipped the net the first time, along with things that have changed since the time of that blog post.

    These are less-so issues related to compression — that issue has been beaten to death, particularly in MSU’s recent comparison, where x264 beat the crap out of VP8 and the VP8 developers pulled a Pinocchio in the developer comments. But that was expected and isn’t particularly interesting, so I won’t go into that. VP8 doesn’t have to be the best in the world in order to be useful.

    When the ffmpeg VP8 decoder is complete (just a few more asm functions to go), we’ll hopefully be able to post some benchmarks comparing it to libvpx.

    1. The spec, er, I mean, bitstream guide.

    Google has reneged on their claim that a spec existed at all and renamed it a “bitstream guide”. This is probably after it was found that — not merely was it incomplete — but at least a dozen places in the spec differed wildly from what was actually in their own encoder and decoder software ! The deblocking filter, motion vector clamping, probability tables, and many more parts simply disagreed flat-out with the spec. Fortunately, Ronald Bultje, one of the main authors of the ffmpeg VP8 decoder, is rather skilled at reverse-engineering, so we were able to put together a matching implementation regardless.

    Most of the differences aren’t particularly important — they don’t have a huge effect on compression or anything — but make it vastly more difficult to implement a “working” VP8 decoder, or for that matter, decide what “working” really is. For example, Google’s decoder will, if told to “swap the ALT and GOLDEN reference frames”, overwrite both with GOLDEN, because it first sets GOLDEN = ALT, and then sets ALT = GOLDEN. Is this a bug ? Or is this how it’s supposed to work ? It’s hard to tell — there isn’t a spec to say so. Google says that whatever libvpx does is right, but I doubt they intended this.

    I expect a spec will eventually be written, but it was a bit obnoxious of Google — both to the community and to their own developers — to release so early that they didn’t even have their own documentation ready.

    2. The TM intra prediction mode.

    One thing I glossed over in the original piece was that On2 had added an extra intra prediction mode to the standard batch that H.264 came with — they replaced Planar with “TM pred”. For i4x4, which didn’t have a Planar mode, they just added it without replacing an old one, resulting in a total of 10 modes to H.264′s 9. After understanding and writing assembly code for TM pred, I have to say that it is quite a cool idea. Here’s how it works :

    1. Let us take a block of size 4×4, 8×8, or 16×16.

    2. Define the pixels bordering the top of this block (starting from the left) as T[0], T[1], T[2]…

    3. Define the pixels bordering the left of this block (starting from the top) as L[0], L[1], L[2]…

    4. Define the pixel above the top-left of the block as TL.

    5. Predict every pixel <X,Y> in the block to be equal to clip3( T[X] + L[Y] – TL, 0, 255).

    It’s effectively a generalization of gradient prediction to the block level — predict each pixel based on the gradient between its top and left pixels, and the topleft. According to the VP8 devs, it’s chosen by the encoder quite a lot of the time, which isn’t surprising ; it seems like a pretty good idea. As just one more intra pred mode, it’s not going to do magic for compression, but it’s a cool idea and elegantly simple.

    3. Performance and the deblocking filter.

    On2 advertised for quite some that VP8′s goal was to be significantly faster to decode than H.264. When I saw the spec, I waited for the punchline, but apparently they were serious. There’s nothing wrong with being of similar speed or a bit slower — but I was rather confused as to the fact that their design didn’t match their stated goal at all. What apparently happened is they had multiple profiles of VP8 — high and low complexity profiles. They marketed the performance of the low complexity ones while touting the quality of the high complexity ones, a tad dishonest. More importantly though, practically nobody is using the low complexity modes, so anyone writing a decoder has to be prepared to handle the high complexity ones, which are the default.

    The primary time-eater here is the deblocking filter. VP8, being an H.264 derivative, has much the same problem as H.264 does in terms of deblocking — it spends an absurd amount of time there. As I write this post, we’re about to finish some of the deblocking filter asm code, but before it’s committed, up to 70% or more of total decoding time is spent in the deblocking filter ! Like H.264, it suffers from the 4×4 transform problem : a 4×4 transform requires a total of 8 length-16 and 8 length-8 loopfilter calls per macroblock, while Theora, with only an 8×8 transform, requires half that.

    This problem is aggravated in VP8 by the fact that the deblocking filter isn’t strength-adaptive ; if even one 4×4 block in a macroblock contains coefficients, every single edge has to be deblocked. Furthermore, the deblocking filter itself is quite complicated ; the “inner edge” filter is a bit more complex than H.264′s and the “macroblock edge” filter is vastly more complicated, having two entirely different codepaths chosen on a per-pixel basis. Of course, in SIMD, this means you have to do both and mask them together at the end.

    There’s nothing wrong with a good-but-slow deblocking filter. But given the amount of deblocking one needs to do in a 4×4-transform-based format, it might have been a better choice to make the filter simpler. It’s pretty difficult to beat H.264 on compression, but it’s certainly not hard to beat it on speed — and yet it seems VP8 missed a perfectly good chance to do so. Another option would have been to pick an 8×8 transform instead of 4×4, reducing the amount of deblocking by a factor of 2.

    And yes, there’s a simple filter available in the low complexity profile, but it doesn’t help if nobody uses it.

    4. Tree-based arithmetic coding.

    Binary arithmetic coding has become the standard entropy coding method for a wide variety of compressed formats, ranging from LZMA to VP6, H.264 and VP8. It’s simple, relatively fast compared to other arithmetic coding schemes, and easy to make adaptive. The problem with this is that you have to come up with a method for converting non-binary symbols into a list of binary symbols, and then choosing what probabilities to use to code each one. Here’s an example from H.264, the sub-partition mode symbol, which is either 8×8, 8×4, 4×8, or 4×4. encode_decision( context, bit ) writes a binary decision (bit) into a numbered context (context).

    8×8 : encode_decision( 21, 0 ) ;

    8×4 : encode_decision( 21, 1 ) ; encode_decision( 22, 0 ) ;

    4×8 : encode_decision( 21, 1 ) ; encode_decision( 22, 1 ) ; encode_decision( 23, 1 ) ;

    4×4 : encode_decision( 21, 1 ) ; encode_decision( 22, 1 ) ; encode_decision( 23, 0 ) ;

    As can be seen, this is clearly like a Huffman tree. Wouldn’t it be nice if we could represent this in the form of an actual tree data structure instead of code ? On2 thought so — they designed a simple system in VP8 that allowed all binarization schemes in the entire format to be represented as simple tree data structures. This greatly reduces the complexity — not speed-wise, but implementation-wise — of the entropy coder. Personally, I quite like it.

    5. The inverse transform ordering.

    I should at some point write a post about common mistakes made in video formats that everyone keeps making. These are not issues that are patent worries or huge issues for compression — just stupid mistakes that are repeatedly made in new video formats, probably because someone just never asked the guy next to him “does this look stupid ?” before sticking it in the spec.

    One common mistake is the problem of transform ordering. Every sane 2D transform is “separable” — that is, it can be done by doing a 1D transform vertically and doing the 1D transform again horizontally (or vice versa). The original iDCT as used in JPEG, H.263, and MPEG-1/2/4 was an “idealized” iDCT — nobody had to use the exact same iDCT, theirs just had to give very close results to a reference implementation. This ended up resulting in a lot of practical problems. It was also slow ; the only way to get an accurate enough iDCT was to do all the intermediate math in 32-bit.

    Practically every modern format, accordingly, has specified an exact iDCT. This includes H.264, VC-1, RV40, Theora, VP8, and many more. Of course, with an exact iDCT comes an exact ordering — while the “real” iDCT can be done in any order, an exact iDCT usually requires an exact order. That is, it specifies horizontal and then vertical, or vertical and then horizontal.

    All of these transforms end up being implemented in SIMD. In SIMD, a vertical transform is generally the only option, so a transpose is added to the process instead of doing a horizontal transform. Accordingly, there are two ways to do it :

    1. Transpose, vertical transform, transpose, vertical transform.

    2. Vertical transform, transpose, vertical transform, transpose.

    These may seem to be equally good, but there’s one catch — if the transpose is done first, it can be completely eliminated by merging it into the coefficient decoding process. On many modern CPUs, particularly x86, transposes are very expensive, so eliminating one of the two gives a pretty significant speed benefit.

    H.264 did it way 1).

    VC-1 did it way 1).

    Theora (inherited from VP3) did it way 1).

    But no. VP8 has to do it way 2), where you can’t eliminate the transpose. Bah. It’s not a huge deal ; probably only 1-2% overall at most speed-wise, but it’s just a needless waste. What really bugs me is that VP3 got it right — why in the world did they screw it up this time around if they got it right beforehand ?

    RV40 is the other modern format I know that made this mistake.

    (NB : You can do transforms without a transpose, but it’s generally not worth it unless the intermediate needs 32-bit math, as in the case of the “real” iDCT.)

    6. Not supporting interlacing.

    THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU.

    Interlacing was the scourge of H.264. It weaseled its way into every nook and cranny of the spec, making every decoder a thousand lines longer. H.264 even included a highly complicated — and effective — dedicated interlaced coding scheme, MBAFF. The mere existence of MBAFF, despite its usefulness for broadcasters and others still stuck in the analog age with their 1080i, 576i , and 480i content, was a blight upon the video format.

    VP8 has once and for all avoided it.

    And if anyone suggests adding interlaced support to the experimental VP8 branch, find a straightjacket and padded cell for them before they cause any real damage.