
Recherche avancée
Autres articles (72)
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Encodage et transformation en formats lisibles sur Internet
10 avril 2011MediaSPIP transforme et ré-encode les documents mis en ligne afin de les rendre lisibles sur Internet et automatiquement utilisables sans intervention du créateur de contenu.
Les vidéos sont automatiquement encodées dans les formats supportés par HTML5 : MP4, Ogv et WebM. La version "MP4" est également utilisée pour le lecteur flash de secours nécessaire aux anciens navigateurs.
Les documents audios sont également ré-encodés dans les deux formats utilisables par HTML5 :MP3 et Ogg. La version "MP3" (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir
Sur d’autres sites (11745)
-
Combining multiple image files into a video while using filter_complex to apply a watermark
14 décembre 2017, par GeuisI’m trying to combine two ffmpeg operations into a single one.
Currently I have two sets of ffmpeg commands that first generate a video from existing images, then runs that video through ffmpeg again to apply a watermark.
I’d like to see if its possible to combine these into a single operation.
# Create the source video
ffmpeg -y \
-framerate 1/1 \
-i layer-%d.png \
-r 30 -vcodec libx264 -preset ultrafast -crf 23 -pix_fmt yuv420p \
output.mp4
# Apply the watermark and render the final output
ffmpeg -y \
-i output.mp4 \
-i logo.png \
-filter_complex "[1:v][0:v]scale2ref=40:40[a][b];[b][a]overlay=(80):(main_h-200-80)" \
final.mp4 -
Beware the builtins
14 janvier 2010, par Mans — CompilersGCC includes a large number of builtin functions allegedly providing optimised code for common operations not easily expressed directly in C. Rather than taking such claims at face value (this is GCC after all), I decided to conduct a small investigation to see how well a few of these functions are actually implemented for various targets.
For my test, I selected the following functions :
__builtin_bswap32
: Byte-swap a 32-bit word.__builtin_bswap64
: Byte-swap a 64-bit word.__builtin_clz
: Count leading zeros in a word.__builtin_ctz
: Count trailing zeros in a word.__builtin_prefetch
: Prefetch data into cache.
To test the quality of these builtins, I wrapped each in a normal function, then compiled the code for these targets :
- ARMv7
- AVR32
- MIPS
- MIPS64
- PowerPC
- PowerPC64
- x86
- x86_64
In all cases I used compiler flags were
-O3 -fomit-frame-pointer
plus any flags required to select a modern CPU model.
ARM
Both
__builtin_clz
and__builtin_prefetch
generate the expectedCLZ
andPLD
instructions respectively. The code for__builtin_ctz
is reasonable for ARMv6 and earlier :rsb r3, r0, #0 and r0, r3, r0 clz r0, r0 rsb r0, r0, #31
For ARMv7 (in fact v6T2), however, using the new bit-reversal instruction would have been better :
rbit r0, r0 clz r0, r0
I suspect this is simply a matter of the function not yet having been updated for ARMv7, which is perhaps even excusable given the relatively rare use cases for it.
The byte-reversal functions are where it gets shocking. Rather than use the
REV
instruction found from ARMv6 on, both of them generate external calls to__bswapsi2
and__bswapdi2
in libgcc, which is plain C code :SItype __bswapsi2 (SItype u) return ((((u) & 0xff000000) >> 24) | (((u) & 0x00ff0000) >> 8) | (((u) & 0x0000ff00) << 8) | (((u) & 0x000000ff) << 24)) ;
DItype
__bswapdi2 (DItype u)
return ((((u) & 0xff00000000000000ull) >> 56)
| (((u) & 0x00ff000000000000ull) >> 40)
| (((u) & 0x0000ff0000000000ull) >> 24)
| (((u) & 0x000000ff00000000ull) >> 8)
| (((u) & 0x00000000ff000000ull) << 8)
| (((u) & 0x0000000000ff0000ull) << 24)
| (((u) & 0x000000000000ff00ull) << 40)
| (((u) & 0x00000000000000ffull) << 56)) ;
While the 32-bit version compiles to a reasonable-looking shift/mask/or job, the 64-bit one is a real WTF. Brace yourselves :
push r4, r5, r6, r7, r8, r9, sl, fp mov r5, #0 mov r6, #65280 ; 0xff00 sub sp, sp, #40 ; 0x28 and r7, r0, r5 and r8, r1, r6 str r7, [sp, #8] str r8, [sp, #12] mov r9, #0 mov r4, r1 and r5, r0, r9 mov sl, #255 ; 0xff ldr r9, [sp, #8] and r6, r4, sl mov ip, #16711680 ; 0xff0000 str r5, [sp, #16] str r6, [sp, #20] lsl r2, r0, #24 and ip, ip, r1 lsr r7, r4, #24 mov r1, #0 lsr r5, r9, #24 mov sl, #0 mov r9, #-16777216 ; 0xff000000 and fp, r0, r9 lsr r6, ip, #8 orr r9, r7, r1 and ip, r4, sl orr sl, r1, r2 str r6, [sp] str r9, [sp, #32] str sl, [sp, #36] ; 0x24 add r8, sp, #32 ldm r8, r7, r8 str r1, [sp, #4] ldm sp, r9, sl orr r7, r7, r9 orr r8, r8, sl str r7, [sp, #32] str r8, [sp, #36] ; 0x24 mov r3, r0 mov r7, #16711680 ; 0xff0000 mov r8, #0 and r9, r3, r7 and sl, r4, r8 ldr r0, [sp, #16] str fp, [sp, #24] str ip, [sp, #28] stm sp, r9, sl ldr r7, [sp, #20] ldr sl, [sp, #12] ldr fp, [sp, #12] ldr r8, [sp, #28] lsr r0, r0, #8 orr r7, r0, r7, lsl #24 lsr r6, sl, #24 orr r5, r5, fp, lsl #8 lsl sl, r8, #8 mov fp, r7 add r8, sp, #32 ldm r8, r7, r8 orr r6, r6, r8 ldr r8, [sp, #20] ldr r0, [sp, #24] orr r5, r5, r7 lsr r8, r8, #8 orr sl, sl, r0, lsr #24 mov ip, r8 ldr r0, [sp, #4] orr fp, fp, r5 ldr r5, [sp, #24] orr ip, ip, r6 ldr r6, [sp] lsl r9, r5, #8 lsl r8, r0, #24 orr fp, fp, r9 lsl r3, r3, #8 orr r8, r8, r6, lsr #8 orr ip, ip, sl lsl r7, r6, #24 and r5, r3, #16711680 ; 0xff0000 orr r7, r7, fp orr r8, r8, ip orr r4, r1, r7 orr r5, r5, r8 mov r9, r6 mov r1, r5 mov r0, r4 add sp, sp, #40 ; 0x28 pop r4, r5, r6, r7, r8, r9, sl, fp bx lr
That’s right, 91 instructions to move 8 bytes around a bit. GCC definitely has a problem with 64-bit numbers. It is perhaps worth noting that the
bswap_64
macro in glibc splits the 64-bit value into 32-bit halves which are then reversed independently, thus side-stepping this weakness of gcc.As a side note, ARM RVCT (armcc) compiles those functions perfectly into one and two
REV
instructions, respectively.AVR32
There is not much to report here. The latest gcc version available is 4.2.4, which doesn’t appear to have the bswap functions. The other three are handled nicely, even using a bit-reverse for
__builtin_ctz
.MIPS / MIPS64
The situation MIPS is similar to ARM. Both bswap builtins result in external libgcc calls, the rest giving sensible code.
PowerPC
I scarcely believe my eyes, but this one is actually not bad. The PowerPC has no byte-reversal instructions, yet someone seems to have taken the time to teach gcc a good instruction sequence for this operation. The PowerPC does have some powerful rotate-and-mask instructions which come in handy here. First the 32-bit version :
rotlwi r0,r3,8 rlwimi r0,r3,24,0,7 rlwimi r0,r3,24,16,23 mr r3,r0 blr
The 64-bit byte-reversal simply applies the above code on each half of the value :
rotlwi r0,r3,8 rlwimi r0,r3,24,0,7 rlwimi r0,r3,24,16,23 rotlwi r3,r4,8 rlwimi r3,r4,24,0,7 rlwimi r3,r4,24,16,23 mr r4,r0 blr
Although I haven’t analysed that code carefully, it looks pretty good.
PowerPC64
Doing 64-bit operations is easier on a 64-bit CPU, right ? For you and me perhaps, but not for gcc. Here
__builtin_bswap64
gives us the now familiar__bswapdi2
call, and while not as bad as the ARM version, it is not pretty :rldicr r0,r3,8,55 rldicr r10,r3,56,7 rldicr r0,r0,56,15 rldicl r11,r3,8,56 rldicr r9,r3,16,47 or r11,r10,r11 rldicr r9,r9,48,23 rldicl r10,r0,24,40 rldicr r0,r3,24,39 or r11,r11,r10 rldicl r9,r9,40,24 rldicr r0,r0,40,31 or r9,r11,r9 rlwinm r10,r3,0,0,7 rldicl r0,r0,56,8 or r0,r9,r0 rldicr r10,r10,8,55 rlwinm r11,r3,0,8,15 or r0,r0,r10 rldicr r11,r11,24,39 rlwinm r3,r3,0,16,23 or r0,r0,r11 rldicr r3,r3,40,23 or r3,r0,r3 blr
That is 6 times longer than the (presumably) hand-written 32-bit version.
x86 / x86_64
As one might expect, results on x86 are good. All the tested functions use the available special instructions. One word of caution though : the bit-counting instructions are very slow on some implementations, specifically the Atom, AMD chips, and the notoriously slow Pentium4E.
Conclusion
In conclusion, I would say gcc builtins can be useful to avoid fragile inline assembler. Before using them, however, one should make sure they are not in fact harmful on the required targets. Not even those builtins mapping directly to CPU instructions can be trusted.
-
Decoding audio w/ ffmpeg error on Android
14 août 2012, par strandedWell, I knew I was going out of my comfort zone when I decided to try and decode audio using ffmpeg on Android but now I will have to admit that I'm stranded.
It took me many days to just build ffmpeg for Android. Roman's10 guide did not work for me but finally things started looking up, thanks to this tutorial. So because of Dmitry's help I managed to build the armeabi version (not armeabi-v7) for my phone (LG P500) and everything basic works.But when I try to use avcodec_decode_audio3() things go downhill :( Never before have I felt so close to making things work (after all it seems to be only one line that is troublesome)
but unable to though. I've read many questions here on SO that have brought me closer to the goal. Googling, on the other hand, has had limited results - making questions here the only fruit.Yes, I know ! I ramble. But I can't help it, I'm only trying to explain in detail where I'm stuck and how I got there. So without further ado I bring you the code :
NATIVE CODE :
#include
#include <android></android>log.h>
#include "libavcodec/avcodec.h"
#include "libavformat/avformat.h"
#define LOG_TAG "mylib"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)
#define INBUFF_SIZE 4096
#define AUDIO_INBUFF 20480
#define AUDIO_REFILL_SIZE 4096
jint Java_com_nothingworks_for_me_MainActivity_decode(JNIEnv * env, jobject this, jstring jfilename){
const char *filename = (*env)->GetStringUTFChars(env, jfilename, NULL);
AVCodec *codec;
AVCodecContext *c= NULL;
int audioStream;
int out_size, len, i;
FILE *f, *outfile;
uint8_t *outbuf;
uint8_t inbuf[AUDIO_INBUFF + FF_INPUT_BUFFER_PADDING_SIZE];
AVPacket avpkt;
AVFormatContext *pFormatCtx;
av_register_all();
avcodec_init();
av_init_packet(&avpkt);
if(av_open_input_file(&pFormatCtx, filename, NULL, 0, NULL)!=0)
{
LOGE("Can't open file '%s'\n", filename);
return 1;
}
else
{
LOGI("File was opened\n");
LOGI("File '%s', Codec %s",
pFormatCtx->filename,
pFormatCtx->iformat->name
);
}
if (av_find_stream_info(pFormatCtx) < 0){
LOGE("Can't find stream info");
}
audioStream = -1;
for (i = 0; i < pFormatCtx->nb_streams; i++) {
if (pFormatCtx->streams[i]->codec->codec_type==AVMEDIA_TYPE_AUDIO) {
audioStream = i;
break;
}
}
if (audioStream == -1) {
LOGE("Didn't find stream!");
}
c = pFormatCtx->streams[audioStream]->codec;
codec = avcodec_find_decoder(c->codec_id);
if (!codec) {
LOGE("Unsupported Codec!");
}
c= avcodec_alloc_context();
/* open it */
if (avcodec_open(c, codec) < 0) {
LOGE("Can't open codec");
exit(1);
}
outbuf = av_malloc(AVCODEC_MAX_AUDIO_FRAME_SIZE * 2);
f = fopen(filename, "rb");
if (!f) {
LOGE("Can't open file");
exit(1);
}
/* decode until eof */
avpkt.data = inbuf;
avpkt.size = fread(inbuf, 1, AUDIO_INBUFF, f);
LOGI("avpkt.size %d", avpkt.size);
while (avpkt.size > 0) {
out_size = AVCODEC_MAX_AUDIO_FRAME_SIZE * 2;THINGS GO WRONG HERE ! avcodec_decode_audio3() The code continues from ▲ to ▼ :
len = avcodec_decode_audio3(c, (int16_t *)outbuf, &out_size, &avpkt);
LOGI("data_size %d len %d", out_size, len);
if (len < 0) {
LOGE("Error while decoding");
exit(1);
}
if (out_size > 0) {
}
avpkt.size -= len;
avpkt.data += len;
if (avpkt.size < AUDIO_REFILL_SIZE) {
/* Refill the input buffer, to avoid trying to decode
* incomplete frames. Instead of this, one could also use
* a parser, or use a proper container format through
* libavformat. */
memmove(inbuf, avpkt.data, avpkt.size);
avpkt.data = inbuf;
len = fread(avpkt.data + avpkt.size, 1,
AUDIO_INBUFF - avpkt.size, f);
if (len > 0)
avpkt.size += len;
}
}
fclose(f);
free(outbuf);
avcodec_close(c);
av_free(c);
return 0;
}
What happens is that avcodec_decode_audio3() returns -1 and that's pretty much it :(
I have no idea what to do next. I can't find much info about this and I only started fiddling with C less than two weeks ago so your guidance is my only hope now [play dramatic sound]. Hope someone can shed a little light on this mystery.Ohh ! And the native code is some kind of a hybrid between what I have found here on SO, like this and this, and the ffmpeg example. On the java side I only have a call to this native method and pass it string which is the path to a MP3 song on my droid. I don't use AudioTrack or anything else in my java code yet 'cause I'm only trying to get the decoding to work for now.
-Drama Queen OUT !