Recherche avancée

Médias (91)

Autres articles (52)

  • Personnaliser en ajoutant son logo, sa bannière ou son image de fond

    5 septembre 2013, par

    Certains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;

  • Ecrire une actualité

    21 juin 2013, par

    Présentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
    Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
    Vous pouvez personnaliser le formulaire de création d’une actualité.
    Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (4034)

  • Marketing Cohort Analysis : How To Do It (With Examples)

    12 janvier 2024, par Erin

    The better you understand your customers, the more effective your marketing will become. 

    The good news is you don’t need to run expensive focus groups to learn much about how your customers behave. Instead, you can run a marketing cohort analysis using data from your website analytics.

    A marketing cohort groups your users by certain traits and allows you to drill down to discover why they take the actions on your website they do. 

    In this article, we’ll explain what a marketing cohort analysis is, show you what you can achieve with this analytical technique and provide a step-by-step guide to pulling it off. 

    What is cohort analysis in marketing ?

    A marketing cohort analysis is a form of behavioural analytics where you analyse the behavioural patterns of users who share a similar trait to better understand their actions. 

    These shared traits could be anything like the date they signed up for your product, users who bought your service through a paid ad or email subscribers from the United Kingdom.

    It’s a fantastic way to improve your marketing efforts, allowing you to better understand complex user behaviours, personalise campaigns accordingly and improve your ROI. 

    You can run marketing analysis using an analytics platform like Google Analytics or Matomo. With these platforms, you can measure how cohorts perform using traffic, engagement and conversion metrics.

    An example of marketing cohort chart

    There are two types of cohort analysis : acquisition-based cohort analysis and behavioural-based cohort analysis.

    Acquisition-based cohort analysis

    An acquisition-based cohort divides users by the date they purchased your product or service and tracks their behaviour afterward. 

    For example, one cohort could be all the users who signed up for your product in November. Another could be the users who signed up for your product in October. 

    You could then run a cohort analysis to see how the behaviour of the two cohorts differed. 

    Did the November cohort show higher engagement rates, increased frequency of visits post-acquisition or quicker conversions compared to the October cohort ? Analysing these cohorts can help with refining marketing strategies, optimising user experiences and improving retention and conversion rates.

    As you can see from the example, acquisition-based cohorts are a great way to track the initial acquisition and how user behaviour evolves post-acquisition.

    Behavioural-based cohort analysis

    A behavioural-based cohort divides users by their actions on your site. That could be their bounce rate, the number of actions they took on your site, their average time on site and more.

    View of returning visitors cohort report in Matomo dashboard

    Behavioural cohort analysis gives you a much deeper understanding of user behaviour and how they interact with your website.

    What can you achieve with a marketing cohort analysis ?

    A marketing cohort analysis is a valuable tool that can help marketers and product teams achieve the following goals :

    Understand which customers churn and why

    Acquisition and behavioural cohort analyses help marketing teams understand when and why customers leave. This is one of the most common goals of a marketing cohort analysis. 

    Learn which customers are most valuable

    Want to find out which channels create the most valuable customers or what actions customers take that increase their loyalty ? You can use a cohort analysis to do just that. 

    For example, you may find out you retain users who signed up via direct traffic better than those that signed up from an ad campaign. 

    Discover how to improve your product

    You can even use cohort analysis to identify opportunities to improve your website and track the impact of your changes. For example, you could see how visitor behaviour changes after a website refresh or whether visitors who take a certain action make more purchases. 

    Find out how to improve your marketing campaign

    A marketing cohort analysis makes it easy to find out which campaigns generate the best and most profitable customers. For example, you can run a cohort analysis to determine which channel (PPC ads, organic search, social media, etc.) generates customers with the lowest churn rate. 

    If a certain ad campaign generates the low-churn customers, you can allocate a budget accordingly. Alternatively, if customers from another ad campaign churn quickly, you can look into why that may be the case and optimise your campaigns to improve them. 

    Measure the impact of changes

    You can use a behavioural cohort analysis to understand what impact changes to your website or product have on active users. 

    If you introduced a pricing page to your website, for instance, you could analyse the behaviour of visitors who interacted with that page compared to those who didn’t, using behavioural cohort analysis to gauge the impact of these website changes on engagemen or conversions.

    The problem with cohort analysis in Google Analytics

    Google Analytics is often the first platform marketers turn to when they want to run a cohort analysis. While it’s a free solution, it’s not the most accurate or easy to use and users often encounter various issues

    For starters, Google Analytics can’t process user visitor data if they reject cookies. This can lead to an inaccurate view of traffic and compromise the reliability of your insights.

    In addition, GA is also known for sampling data, meaning it provides a subset rather than the complete dataset. Without the complete view of your website’s performance, you might make the wrong decisions, leading to less effective campaigns, missed opportunities and difficulties in reaching marketing goals.

    How to analyse cohorts with Matomo

    Luckily, there is an alternative to Google Analytics. 

    As the leading open-source web analytics solution, Matomo offers a robust option for cohort analysis. With its 100% accurate data, thanks to the absence of sampling, and its privacy-friendly tracking, users can rely on the data without resorting to guesswork. It is a premium feature included with our Matomo Cloud or available to purchase on the Matomo Marketplace for Matomo On-Premise users.

    Below, we’ll show how you can run a marketing cohort analysis using Matomo.

    Set a goal

    Setting a goal is the first step in running a cohort analysis with any platform. Define what you want to achieve from your analysis and choose the metrics you want to measure. 

    For example, you may want to improve your customer retention rate over the first 90 days. 

    Define cohorts

    Next, create cohorts by defining segmentation criteria. As we’ve discussed above, this could be acquisition-based or behavioural. 

    Matomo makes it easy to define cohorts and create charts. 

    In the sidebar menu, click Visitors > Cohorts. You’ll immediately see Matomo’s standard cohort report (something like the one below).

    Marketing cohort by bounce rate of visitors in Matomo dashboard

    In the example above, we’ve created cohorts by bounce rate. 

    You can view cohorts by weekly, monthly or yearly periods using the date selector and change the metric using the dropdown. Other metrics you can analyse cohorts by include :

    • Unique visitors
    • Return visitors
    • Conversion rates
    • Revenue
    • Actions per visit

    Change the data selection to create your desired cohort, and Matomo will automatically generate the report. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Analyse your cohort chart

    Cohort charts can be intimidating initially, but they are pretty easy to understand and packed with insights. 

    Here’s an example of an acquisition-based cohort chart from Matomo looking at the percentage of returning visitors :

    An Image of a marketing cohort chart in Matomo Analytics

    Cohorts run vertically. The oldest cohort (visitors between February 13 – 19) is at the top of the chart, with the newest cohort (April 17 – 23) at the bottom. 

    The period of time runs horizontally — daily in this case. The cells show the corresponding value for the metric we’re plotting (the percentage of returning visitors). 

    For example, 98.69% of visitors who landed on your site between February 13 – 19, returned two weeks later. 

    Usually, running one cohort analysis isn’t enough to identify a problem or find a solution. That’s why comparing several cohort analyses or digging deeper using segmentation is important.

    Segment your cohort chart

    Matomo lets you dig deeper by segmenting each cohort to examine their behaviour’s specifics. You can do this from the cohort report by clicking the segmented visitor log icon in the relevant row.

    Segmented visit log in Matomo cohort report
    Segmented cohort visitor log in Matomo

    Segmenting cohorts lets you understand why users behave the way they do. For example, suppose you find that users you purchased on Black Friday don’t return to your site often. In that case, you may want to rethink your offers for next year to target an audience with potentially better customer lifetime value. 

    Start using Matomo for marketing cohort analysis

    A marketing cohort analysis can teach you a lot about your customers and the health of your business. But you need the right tools to succeed. 

    Matomo provides an effective and privacy-first way to run your analysis. You can create custom customer segments based on almost anything, from demographics and geography to referral sources and user behaviour. 

    Our custom cohort analysis reports and colour-coded visualisations make it easy to analyse cohorts and spot patterns. Best of all, the data is 100% accurate. Unlike other web analytics solution or cohort analysis tools, we don’t sample data. 

    Find out how you can use Matomo to run marketing cohort analysis by trialling us free for 21 days. No credit card required.

  • Forcing ffmpeg to capture unreliable ALSA audio stream

    6 février 2015, par Peter Becich

    I am attempting to transfer some old Video 8 tapes to my computer, though an EasyCap USB stick and the motherboard’s sound line-in, on Ubuntu. I believe the arguments are correctly laid out below to capture from two independent streams, and encode them both into the output MP4 file.

    ffmpeg’s detection of the ALSA stream is seemingly goofed up by the inconsistencies of the tape. In the failure case, only short blips of the tapes audio exist in the output MP4. The audio bitrate of the output file is less than 10 kbps, averaged out across the whole file. The output video seems to be fine, even though the low frames-per-second in the failure case log below.

    The audio and video streams can be captured fine for short amounts of time before a source error occurs ; this provides the success case log. The failure case log was created by intentionally making an error in the source streams — turning on the camera makes a brief noisy signal.

    Is there a setting that needs to be forced to keep ffmpeg recording the audio stream, even when the tape is blank or noisy ?

    Could it be that the libfdk_aac audio encoder is tripped up by the low quality source ?

    The relevant line ; rawvideo stream is piped to this in script at bottom :

    ffmpeg -pixel_format uyvy422 -s:v 720x480 -framerate 29.97 -f rawvideo \
    -i $PIPE  -f alsa -i hw:0,0 -vf scale=w=720:h=540 -vcodec libx264 \
    -preset ultrafast -shortest -c:a libfdk_aac -b:a 128k -af pan=1:c0=c0  \
    -ar 96000 $OUTFILE

    The ar argument was one attempt to force recording.

    ffmpeg log file for (short-lived) success ; high frames-per-second captured :

    ffmpeg version 2.5.3 Copyright (c) 2000-2015 the FFmpeg developers
     built on Jan 11 2015 17:53:45 with gcc 4.8 (Ubuntu 4.8.2-19ubuntu1)
     configuration: --extra-libs=-ldl --prefix=/opt/ffmpeg --enable-avresample --disable-debug --enable-nonfree --enable-gpl --enable-version3 --enable-libpulse --enable-libopencore-amrnb --enable-libopencore-amrwb --disable-decoder=amrnb --disable-decoder=amrwb --enable-libx264 --enable-libx265 --enable-libfdk-aac --enable-libvorbis --enable-libmp3lame --enable-libopus --enable-libvpx --enable-libspeex --enable-libass --enable-avisynth --enable-libsoxr --enable-libxvid --enable-libvo-aacenc --enable-libvidstab
     libavutil      54. 15.100 / 54. 15.100
     libavcodec     56. 13.100 / 56. 13.100
     libavformat    56. 15.102 / 56. 15.102
     libavdevice    56.  3.100 / 56.  3.100
     libavfilter     5.  2.103 /  5.  2.103
     libavresample   2.  1.  0 /  2.  1.  0
     libswscale      3.  1.101 /  3.  1.101
     libswresample   1.  1.100 /  1.  1.100
     libpostproc    53.  3.100 / 53.  3.100
    Input #0, rawvideo, from '/tmp/somagic-pipe':
     Duration: N/A, start: 0.000000, bitrate: 165722 kb/s
       Stream #0:0: Video: rawvideo (UYVY / 0x59565955), uyvy422, 720x480, 165722 kb/s, 29.97 tbr, 29.97 tbn, 29.97 tbc
    Home directory not accessible: Permission denied
    Guessed Channel Layout for  Input Stream #1.0 : stereo
    Input #1, alsa, from 'hw:0,0':
     Duration: N/A, start: 1423202268.577088, bitrate: 1536 kb/s
       Stream #1:0: Audio: pcm_s16le, 48000 Hz, 2 channels, s16, 1536 kb/s
    No pixel format specified, yuv422p for H.264 encoding chosen.
    Use -pix_fmt yuv420p for compatibility with outdated media players.
    [Parsed_pan_0 @ 0x3335d60] This syntax is deprecated. Use '|' to separate the list items.
    Single channel layout '1' is interpreted as a number of channels, switch to the syntax '1c' otherwise it will be interpreted as a channel layout number in a later version
    [Parsed_pan_0 @ 0x3335d60] Pure channel mapping detected: 0
    [libx264 @ 0x3364bc0] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.1 Cache64
    [libx264 @ 0x3364bc0] profile High 4:2:2, level 3.1, 4:2:2 8-bit
    [libx264 @ 0x3364bc0] 264 - core 142 r2389 956c8d8 - H.264/MPEG-4 AVC codec - Copyleft 2003-2014 - http://www.videolan.org/x264.html - options: cabac=0 ref=1 deblock=0:0:0 analyse=0:0 me=dia subme=0 psy=1 psy_rd=1.00:0.00 mixed_ref=0 me_range=16 chroma_me=1 trellis=0 8x8dct=0 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=0 threads=3 lookahead_threads=1 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=0 weightp=0 keyint=250 keyint_min=25 scenecut=0 intra_refresh=0 rc=crf mbtree=0 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=0
    Output #0, mp4, to '/home/peterbecich/easycap/Videos/fpv_video_02_05_2015_21_57_48.mp4':
     Metadata:
       encoder         : Lavf56.15.102
       Stream #0:0: Video: h264 (libx264) ([33][0][0][0] / 0x0021), yuv422p, 720x540, q=-1--1, 29.97 fps, 11988 tbn, 29.97 tbc
       Metadata:
         encoder         : Lavc56.13.100 libx264
       Stream #0:1: Audio: aac (libfdk_aac) ([64][0][0][0] / 0x0040), 96000 Hz, mono, s16, 128 kb/s
       Metadata:
         encoder         : Lavc56.13.100 libfdk_aac
    Stream mapping:
     Stream #0:0 -> #0:0 (rawvideo (native) -> h264 (libx264))
     Stream #1:0 -> #0:1 (pcm_s16le (native) -> aac (libfdk_aac))
    Press [q] to stop, [?] for help
    frame=   13 fps=0.0 q=26.0 size=     187kB time=00:00:00.30 bitrate=5102.7kbits/s    
    frame=   29 fps= 29 q=26.0 size=     469kB time=00:00:00.83 bitrate=4607.6kbits/s    
    frame=   44 fps= 29 q=26.0 size=     755kB time=00:00:01.33 bitrate=4635.2kbits/s    
    frame=   59 fps= 29 q=26.0 size=    1024kB time=00:00:01.83 bitrate=4572.1kbits/s    
    frame=   74 fps= 29 q=26.0 size=    1279kB time=00:00:02.33 bitrate=4486.5kbits/s    
    frame=   89 fps= 29 q=26.0 size=    1516kB time=00:00:02.83 bitrate=4378.0kbits/s    
    frame=  104 fps= 29 q=26.0 size=    1752kB time=00:00:03.33 bitrate=4301.0kbits/s    
    frame=  119 fps= 29 q=26.0 size=    1991kB time=00:00:03.83 bitrate=4251.1kbits/s    
    frame=  135 fps= 30 q=26.0 size=    2245kB time=00:00:04.37 bitrate=4207.5kbits/s    
    frame=  150 fps= 30 q=26.0 size=    2524kB time=00:00:04.87 bitrate=4245.0kbits/s    
    frame=  165 fps= 30 q=26.0 size=    2808kB time=00:00:05.37 bitrate=4282.0kbits/s    
    frame=  180 fps= 30 q=26.0 size=    3091kB time=00:00:05.87 bitrate=4311.5kbits/s    
    [rawvideo @ 0x3350640] Invalid buffer size, packet size 65536 < expected frame_size 691200
    Error while decoding stream #0:0: Invalid argument
    frame=  183 fps= 29 q=-1.0 Lsize=    3247kB time=00:00:06.11 bitrate=4351.5kbits/s    
    video:3142kB audio:96kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.254788%
    [libx264 @ 0x3364bc0] frame I:1     Avg QP:20.00  size:  2289
    [libx264 @ 0x3364bc0] frame P:182   Avg QP:25.99  size: 17664
    [libx264 @ 0x3364bc0] mb I  I16..4: 100.0%  0.0%  0.0%
    [libx264 @ 0x3364bc0] mb P  I16..4: 78.5%  0.0%  0.0%  P16..4: 20.2%  0.0%  0.0%  0.0%  0.0%    skip: 1.4%
    [libx264 @ 0x3364bc0] coded y,uvDC,uvAC intra: 84.1% 71.5% 18.9% inter: 51.9% 63.5% 0.4%
    [libx264 @ 0x3364bc0] i16 v,h,dc,p: 15%  8% 69%  8%
    [libx264 @ 0x3364bc0] i8c dc,h,v,p: 50% 19% 24%  7%
    [libx264 @ 0x3364bc0] kb/s:4215.02

    ffmpeg log for failure ; low FPS captured :

    ffmpeg version 2.5.3 Copyright (c) 2000-2015 the FFmpeg developers
     built on Jan 11 2015 17:53:45 with gcc 4.8 (Ubuntu 4.8.2-19ubuntu1)
     configuration: --extra-libs=-ldl --prefix=/opt/ffmpeg --enable-avresample --disable-debug --enable-nonfree --enable-gpl --enable-version3 --enable-libpulse --enable-libopencore-amrnb --enable-libopencore-amrwb --disable-decoder=amrnb --disable-decoder=amrwb --enable-libx264 --enable-libx265 --enable-libfdk-aac --enable-libvorbis --enable-libmp3lame --enable-libopus --enable-libvpx --enable-libspeex --enable-libass --enable-avisynth --enable-libsoxr --enable-libxvid --enable-libvo-aacenc --enable-libvidstab
     libavutil      54. 15.100 / 54. 15.100
     libavcodec     56. 13.100 / 56. 13.100
     libavformat    56. 15.102 / 56. 15.102
     libavdevice    56.  3.100 / 56.  3.100
     libavfilter     5.  2.103 /  5.  2.103
     libavresample   2.  1.  0 /  2.  1.  0
     libswscale      3.  1.101 /  3.  1.101
     libswresample   1.  1.100 /  1.  1.100
     libpostproc    53.  3.100 / 53.  3.100
    Input #0, rawvideo, from '/tmp/somagic-pipe':
     Duration: N/A, start: 0.000000, bitrate: 165722 kb/s
       Stream #0:0: Video: rawvideo (UYVY / 0x59565955), uyvy422, 720x480, 165722 kb/s, 29.97 tbr, 29.97 tbn, 29.97 tbc
    Home directory not accessible: Permission denied
    Guessed Channel Layout for  Input Stream #1.0 : stereo
    Input #1, alsa, from 'hw:0,0':
     Duration: N/A, start: 1423201999.226455, bitrate: 1536 kb/s
       Stream #1:0: Audio: pcm_s16le, 48000 Hz, 2 channels, s16, 1536 kb/s
    No pixel format specified, yuv422p for H.264 encoding chosen.
    Use -pix_fmt yuv420p for compatibility with outdated media players.
    [Parsed_pan_0 @ 0x21cad60] This syntax is deprecated. Use '|' to separate the list items.
    Single channel layout '1' is interpreted as a number of channels, switch to the syntax '1c' otherwise it will be interpreted as a channel layout number in a later version
    [Parsed_pan_0 @ 0x21cad60] Pure channel mapping detected: 0
    [libx264 @ 0x21f9bc0] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.1 Cache64
    [libx264 @ 0x21f9bc0] profile High 4:2:2, level 3.1, 4:2:2 8-bit
    [libx264 @ 0x21f9bc0] 264 - core 142 r2389 956c8d8 - H.264/MPEG-4 AVC codec - Copyleft 2003-2014 - http://www.videolan.org/x264.html - options: cabac=0 ref=1 deblock=0:0:0 analyse=0:0 me=dia subme=0 psy=1 psy_rd=1.00:0.00 mixed_ref=0 me_range=16 chroma_me=1 trellis=0 8x8dct=0 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=0 threads=3 lookahead_threads=1 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=0 weightp=0 keyint=250 keyint_min=25 scenecut=0 intra_refresh=0 rc=crf mbtree=0 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=0
    Output #0, mp4, to '/home/peterbecich/easycap/Videos/fpv_video_02_05_2015_21_53_18.mp4':
     Metadata:
       encoder         : Lavf56.15.102
       Stream #0:0: Video: h264 (libx264) ([33][0][0][0] / 0x0021), yuv422p, 720x540, q=-1--1, 29.97 fps, 11988 tbn, 29.97 tbc
       Metadata:
         encoder         : Lavc56.13.100 libx264
       Stream #0:1: Audio: aac (libfdk_aac) ([64][0][0][0] / 0x0040), 96000 Hz, mono, s16, 128 kb/s
       Metadata:
         encoder         : Lavc56.13.100 libfdk_aac
    Stream mapping:
     Stream #0:0 -> #0:0 (rawvideo (native) -> h264 (libx264))
     Stream #1:0 -> #0:1 (pcm_s16le (native) -> aac (libfdk_aac))
    Press [q] to stop, [?] for help
    frame=    1 fps=0.0 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=1.0 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=0.7 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=0.5 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=0.4 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=0.3 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=0.3 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=0.2 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=0.2 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=0.2 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    frame=    1 fps=0.2 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A    
    [alsa @ 0x21e5ac0] ALSA buffer xrun.
    frame=    8 fps=1.3 q=19.0 size=      12kB time=00:00:06.03 bitrate=  15.9kbits/s    
    frame=   23 fps=3.5 q=18.0 size=      12kB time=00:00:06.03 bitrate=  16.4kbits/s    
    frame=   38 fps=5.4 q=18.0 size=      12kB time=00:00:06.03 bitrate=  16.7kbits/s    
    frame=   53 fps=7.0 q=18.0 size=      12kB time=00:00:06.03 bitrate=  16.9kbits/s    
    frame=   68 fps=8.4 q=26.0 size=     146kB time=00:00:06.03 bitrate= 198.8kbits/s    
    frame=   83 fps=9.7 q=26.0 size=     375kB time=00:00:06.03 bitrate= 510.0kbits/s    
    frame=   98 fps= 11 q=26.0 size=     608kB time=00:00:06.03 bitrate= 826.5kbits/s    
    frame=  114 fps= 12 q=26.0 size=     875kB time=00:00:06.03 bitrate=1189.1kbits/s    
    frame=  128 fps= 13 q=26.0 size=    1091kB time=00:00:06.03 bitrate=1481.6kbits/s    
    frame=  144 fps= 14 q=26.0 size=    1339kB time=00:00:06.03 bitrate=1819.2kbits/s    
    frame=  159 fps= 14 q=26.0 size=    1571kB time=00:00:06.03 bitrate=2134.6kbits/s    
    frame=  174 fps= 15 q=26.0 size=    1796kB time=00:00:06.03 bitrate=2440.1kbits/s    
    [alsa @ 0x21e5ac0] ALSA buffer xrun.
    frame=  189 fps= 16 q=26.0 size=    2015kB time=00:00:12.04 bitrate=1370.4kbits/s    
    frame=  204 fps= 16 q=26.0 size=    2238kB time=00:00:12.04 bitrate=1522.3kbits/s    
    frame=  219 fps= 17 q=26.0 size=    2490kB time=00:00:12.04 bitrate=1694.2kbits/s    
    frame=  235 fps= 17 q=26.0 size=    2728kB time=00:00:12.04 bitrate=1855.8kbits/s    
    frame=  250 fps= 18 q=26.0 size=    2973kB time=00:00:12.04 bitrate=2022.4kbits/s    
    [rawvideo @ 0x21e5640] Invalid buffer size, packet size 65536 < expected frame_size 691200
    Error while decoding stream #0:0: Invalid argument
    frame=  261 fps= 18 q=-1.0 Lsize=    3269kB time=00:00:12.06 bitrate=2220.1kbits/s    
    video:3263kB audio:4kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.081101%
    [libx264 @ 0x21f9bc0] frame I:2     Avg QP:21.50  size: 21342
    [libx264 @ 0x21f9bc0] frame P:259   Avg QP:24.22  size: 12734
    [libx264 @ 0x21f9bc0] mb I  I16..4: 100.0%  0.0%  0.0%
    [libx264 @ 0x21f9bc0] mb P  I16..4: 62.8%  0.0%  0.0%  P16..4: 14.2%  0.0%  0.0%  0.0%  0.0%    skip:22.9%
    [libx264 @ 0x21f9bc0] coded y,uvDC,uvAC intra: 77.7% 61.2% 14.1% inter: 19.7% 24.8% 1.6%
    [libx264 @ 0x21f9bc0] i16 v,h,dc,p: 17% 10% 65%  8%
    [libx264 @ 0x21f9bc0] i8c dc,h,v,p: 52% 18% 24%  6%
    [libx264 @ 0x21f9bc0] kb/s:3068.90

    The whole script :

    #!/bin/sh

    PIPE=/tmp/somagic-pipe
    OUTFILEDIR=~/easycap/Videos/
    LOGDIR=~/.somagic-log/
    NOW=`date +"%m_%d_%Y_%H_%M_%S"`

    OUTFILE=${OUTFILEDIR}fpv_video_${NOW}.mp4

    mkdir $LOGDIR

    FFMPEG_LOG=${LOGDIR}ffmpeg.log
    SOMAGIC_LOG=${LOGDIR}somagic.log
    MPLAYER_LOG=${LOGDIR}mplayer.log

    rm $PIPE >/dev/null 2>&1
    rm $OUTFILE >/dev/null 2>&1

    rm $FFMPEG_LOG
    rm $SOMAGIC_LOG
    rm $MPLAYER_LOG

    mkfifo $PIPE >/dev/null 2>&1

    ffmpeg -pixel_format uyvy422 -s:v 720x480 -framerate 29.97 -f rawvideo \
    -i $PIPE  -f alsa -i hw:0,0 -vf scale=w=720:h=540 -vcodec libx264 \
    -preset ultrafast -shortest -c:a libfdk_aac -b:a 128k -af pan=1:c0=c0  \
    -ar 96000 $OUTFILE > $FFMPEG_LOG 2>&1 &

    somagic-capture --ntsc -c --luminance=2 --lum-aperture=3 2> $SOMAGIC_LOG \
    | tee $PIPE | \
    mplayer -vf yadif,screenshot -demuxer rawvideo -rawvideo \
    "ntsc:format=uyvy:fps=30000/1001" -aspect 4:3 - 2> $MPLAYER_LOG


    rm $PIPE >/dev/null 2>&1

    Modified from here : https://gist.github.com/Brick85/0b327ac2d3d45e23ed33