Recherche avancée

Médias (1)

Mot : - Tags -/Christian Nold

Autres articles (47)

  • Personnaliser les catégories

    21 juin 2013, par

    Formulaire de création d’une catégorie
    Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
    Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire.
    Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
    Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...)

  • Ajouter notes et légendes aux images

    7 février 2011, par

    Pour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
    Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
    Modification lors de l’ajout d’un média
    Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)

  • Installation en mode ferme

    4 février 2011, par

    Le mode ferme permet d’héberger plusieurs sites de type MediaSPIP en n’installant qu’une seule fois son noyau fonctionnel.
    C’est la méthode que nous utilisons sur cette même plateforme.
    L’utilisation en mode ferme nécessite de connaïtre un peu le mécanisme de SPIP contrairement à la version standalone qui ne nécessite pas réellement de connaissances spécifique puisque l’espace privé habituel de SPIP n’est plus utilisé.
    Dans un premier temps, vous devez avoir installé les mêmes fichiers que l’installation (...)

Sur d’autres sites (7481)

  • Revision 32312 : - On rend « interfaces » dépendant de saisies pour simplifier le formulaire ...

    23 octobre 2009, par marcimat@… — Log

    On rend « interfaces » dépendant de saisies pour simplifier le formulaire qui vera certainement bientôt de nouveaux champs. - Début d’un essai d’exploration des saisies du plugin saisies, avec un define. (non fonctionnel)

  • Beware the builtins

    14 janvier 2010, par Mans — Compilers

    GCC includes a large number of builtin functions allegedly providing optimised code for common operations not easily expressed directly in C. Rather than taking such claims at face value (this is GCC after all), I decided to conduct a small investigation to see how well a few of these functions are actually implemented for various targets.

    For my test, I selected the following functions :

    • __builtin_bswap32 : Byte-swap a 32-bit word.
    • __builtin_bswap64 : Byte-swap a 64-bit word.
    • __builtin_clz : Count leading zeros in a word.
    • __builtin_ctz : Count trailing zeros in a word.
    • __builtin_prefetch : Prefetch data into cache.

    To test the quality of these builtins, I wrapped each in a normal function, then compiled the code for these targets :

    • ARMv7
    • AVR32
    • MIPS
    • MIPS64
    • PowerPC
    • PowerPC64
    • x86
    • x86_64

    In all cases I used compiler flags were -O3 -fomit-frame-pointer plus any flags required to select a modern CPU model.

    ARM

    Both __builtin_clz and __builtin_prefetch generate the expected CLZ and PLD instructions respectively. The code for __builtin_ctz is reasonable for ARMv6 and earlier :

    rsb     r3, r0, #0
    and     r0, r3, r0
    clz     r0, r0
    rsb     r0, r0, #31
    

    For ARMv7 (in fact v6T2), however, using the new bit-reversal instruction would have been better :

    rbit    r0, r0
    clz     r0, r0
    

    I suspect this is simply a matter of the function not yet having been updated for ARMv7, which is perhaps even excusable given the relatively rare use cases for it.

    The byte-reversal functions are where it gets shocking. Rather than use the REV instruction found from ARMv6 on, both of them generate external calls to __bswapsi2 and __bswapdi2 in libgcc, which is plain C code :

    SItype
    __bswapsi2 (SItype u)
    
      return ((((u) & 0xff000000) >> 24)
              | (((u) & 0x00ff0000) >>  8)
              | (((u) & 0x0000ff00) <<  8)
              | (((u) & 0x000000ff) << 24)) ;
    
    

    DItype
    __bswapdi2 (DItype u)

    return ((((u) & 0xff00000000000000ull) >> 56)
    | (((u) & 0x00ff000000000000ull) >> 40)
    | (((u) & 0x0000ff0000000000ull) >> 24)
    | (((u) & 0x000000ff00000000ull) >> 8)
    | (((u) & 0x00000000ff000000ull) << 8)
    | (((u) & 0x0000000000ff0000ull) << 24)
    | (((u) & 0x000000000000ff00ull) << 40)
    | (((u) & 0x00000000000000ffull) << 56)) ;

    While the 32-bit version compiles to a reasonable-looking shift/mask/or job, the 64-bit one is a real WTF. Brace yourselves :

    push    r4, r5, r6, r7, r8, r9, sl, fp
    mov     r5, #0
    mov     r6, #65280 ; 0xff00
    sub     sp, sp, #40 ; 0x28
    and     r7, r0, r5
    and     r8, r1, r6
    str     r7, [sp, #8]
    str     r8, [sp, #12]
    mov     r9, #0
    mov     r4, r1
    and     r5, r0, r9
    mov     sl, #255 ; 0xff
    ldr     r9, [sp, #8]
    and     r6, r4, sl
    mov     ip, #16711680 ; 0xff0000
    str     r5, [sp, #16]
    str     r6, [sp, #20]
    lsl     r2, r0, #24
    and     ip, ip, r1
    lsr     r7, r4, #24
    mov     r1, #0
    lsr     r5, r9, #24
    mov     sl, #0
    mov     r9, #-16777216 ; 0xff000000
    and     fp, r0, r9
    lsr     r6, ip, #8
    orr     r9, r7, r1
    and     ip, r4, sl
    orr     sl, r1, r2
    str     r6, [sp]
    str     r9, [sp, #32]
    str     sl, [sp, #36] ; 0x24
    add     r8, sp, #32
    ldm     r8, r7, r8
    str     r1, [sp, #4]
    ldm     sp, r9, sl
    orr     r7, r7, r9
    orr     r8, r8, sl
    str     r7, [sp, #32]
    str     r8, [sp, #36] ; 0x24
    mov     r3, r0
    mov     r7, #16711680 ; 0xff0000
    mov     r8, #0
    and     r9, r3, r7
    and     sl, r4, r8
    ldr     r0, [sp, #16]
    str     fp, [sp, #24]
    str     ip, [sp, #28]
    stm     sp, r9, sl
    ldr     r7, [sp, #20]
    ldr     sl, [sp, #12]
    ldr     fp, [sp, #12]
    ldr     r8, [sp, #28]
    lsr     r0, r0, #8
    orr     r7, r0, r7, lsl #24
    lsr     r6, sl, #24
    orr     r5, r5, fp, lsl #8
    lsl     sl, r8, #8
    mov     fp, r7
    add     r8, sp, #32
    ldm     r8, r7, r8
    orr     r6, r6, r8
    ldr     r8, [sp, #20]
    ldr     r0, [sp, #24]
    orr     r5, r5, r7
    lsr     r8, r8, #8
    orr     sl, sl, r0, lsr #24
    mov     ip, r8
    ldr     r0, [sp, #4]
    orr     fp, fp, r5
    ldr     r5, [sp, #24]
    orr     ip, ip, r6
    ldr     r6, [sp]
    lsl     r9, r5, #8
    lsl     r8, r0, #24
    orr     fp, fp, r9
    lsl     r3, r3, #8
    orr     r8, r8, r6, lsr #8
    orr     ip, ip, sl
    lsl     r7, r6, #24
    and     r5, r3, #16711680 ; 0xff0000
    orr     r7, r7, fp
    orr     r8, r8, ip
    orr     r4, r1, r7
    orr     r5, r5, r8
    mov     r9, r6
    mov     r1, r5
    mov     r0, r4
    add     sp, sp, #40 ; 0x28
    pop     r4, r5, r6, r7, r8, r9, sl, fp
    bx      lr
    

    That’s right, 91 instructions to move 8 bytes around a bit. GCC definitely has a problem with 64-bit numbers. It is perhaps worth noting that the bswap_64 macro in glibc splits the 64-bit value into 32-bit halves which are then reversed independently, thus side-stepping this weakness of gcc.

    As a side note, ARM RVCT (armcc) compiles those functions perfectly into one and two REV instructions, respectively.

    AVR32

    There is not much to report here. The latest gcc version available is 4.2.4, which doesn’t appear to have the bswap functions. The other three are handled nicely, even using a bit-reverse for __builtin_ctz.

    MIPS / MIPS64

    The situation MIPS is similar to ARM. Both bswap builtins result in external libgcc calls, the rest giving sensible code.

    PowerPC

    I scarcely believe my eyes, but this one is actually not bad. The PowerPC has no byte-reversal instructions, yet someone seems to have taken the time to teach gcc a good instruction sequence for this operation. The PowerPC does have some powerful rotate-and-mask instructions which come in handy here. First the 32-bit version :

    rotlwi  r0,r3,8
    rlwimi  r0,r3,24,0,7
    rlwimi  r0,r3,24,16,23
    mr      r3,r0
    blr
    

    The 64-bit byte-reversal simply applies the above code on each half of the value :

    rotlwi  r0,r3,8
    rlwimi  r0,r3,24,0,7
    rlwimi  r0,r3,24,16,23
    rotlwi  r3,r4,8
    rlwimi  r3,r4,24,0,7
    rlwimi  r3,r4,24,16,23
    mr      r4,r0
    blr
    

    Although I haven’t analysed that code carefully, it looks pretty good.

    PowerPC64

    Doing 64-bit operations is easier on a 64-bit CPU, right ? For you and me perhaps, but not for gcc. Here __builtin_bswap64 gives us the now familiar __bswapdi2 call, and while not as bad as the ARM version, it is not pretty :

    rldicr  r0,r3,8,55
    rldicr  r10,r3,56,7
    rldicr  r0,r0,56,15
    rldicl  r11,r3,8,56
    rldicr  r9,r3,16,47
    or      r11,r10,r11
    rldicr  r9,r9,48,23
    rldicl  r10,r0,24,40
    rldicr  r0,r3,24,39
    or      r11,r11,r10
    rldicl  r9,r9,40,24
    rldicr  r0,r0,40,31
    or      r9,r11,r9
    rlwinm  r10,r3,0,0,7
    rldicl  r0,r0,56,8
    or      r0,r9,r0
    rldicr  r10,r10,8,55
    rlwinm  r11,r3,0,8,15
    or      r0,r0,r10
    rldicr  r11,r11,24,39
    rlwinm  r3,r3,0,16,23
    or      r0,r0,r11
    rldicr  r3,r3,40,23
    or      r3,r0,r3
    blr
    

    That is 6 times longer than the (presumably) hand-written 32-bit version.

    x86 / x86_64

    As one might expect, results on x86 are good. All the tested functions use the available special instructions. One word of caution though : the bit-counting instructions are very slow on some implementations, specifically the Atom, AMD chips, and the notoriously slow Pentium4E.

    Conclusion

    In conclusion, I would say gcc builtins can be useful to avoid fragile inline assembler. Before using them, however, one should make sure they are not in fact harmful on the required targets. Not even those builtins mapping directly to CPU instructions can be trusted.

  • Monster Battery Power Revisited

    28 mai 2010, par Multimedia Mike — Python, Science Projects

    So I have this new fat netbook battery and I performed an experiment to determine how long it really lasts. In my last post on the matter, it was suggested that I should rely on the information that gnome-power-manager is giving me. However, I have rarely seen GPM report more than about 2 hours of charge ; even on a full battery, it only reports 3h25m when I profiled it as lasting over 5 hours in my typical use. So I started digging to understand how GPM gets its numbers and determine if, perhaps, it’s not getting accurate data from the system.

    I started poking around /proc for the data I wanted. You can learn a lot in /proc as long as you know the right question to ask. I had to remember what the power subsystem is called — ACPI — and this led me to /proc/acpi/battery/BAT0/state which has data such as :

    present :                 yes
    capacity state :          ok
    charging state :          charged
    present rate :            unknown
    remaining capacity :      100 mAh
    present voltage :         8326 mV
    

    "Remaining capacity" rated in mAh is a little odd ; I would later determine that this should actually be expressed as a percentage (i.e., 100% charge at the time of this reading). Examining the GPM source code, it seems to determine as a function of the current CPU load (queried via /proc/stat) and the battery state queried via a facility called devicekit. I couldn’t immediately find any source code to the latter but I was able to install a utility called ’devkit-power’. Mostly, it appears to rehash data already found in the above /proc file.

    Curiously, the file /proc/acpi/battery/BAT0/info, which displays essential information about the battery, reports the design capacity of my battery as only 4400 mAh which is true for the original battery ; the new monster battery is supposed to be 10400 mAh. I can imagine that all of these data points could be conspiring to under-report my remaining battery life.

    Science project : Repeat the previous power-related science project but also parse and track the remaining capacity and present voltage fields from the battery state proc file.

    Let’s skip straight to the results (which are consistent with my last set of results in terms of longevity) :



    So there is definitely something strange going on with the reporting— the 4400 mAh battery reports discharge at a linear rate while the 10400 mAh battery reports precipitous dropoff after 60%.

    Another curious item is that my script broke at first when there was 20% power remaining which, as you can imagine, is a really annoying time to discover such a bug. At that point, the "time to empty" reported by devkit-power jumped from 0 seconds to 20 hours (the first state change observed for that field).

    Here’s my script, this time elevated from Bash script to Python. It requires xdotool and devkit-power to be installed (both should be available in the package manager for a distro).

    PYTHON :
    1. # !/usr/bin/python
    2.  
    3. import commands
    4. import random
    5. import sys
    6. import time
    7.  
    8. XDOTOOL = "/usr/bin/xdotool"
    9. BATTERY_STATE = "/proc/acpi/battery/BAT0/state"
    10. DEVKIT_POWER = "/usr/bin/devkit-power -i /org/freedesktop/DeviceKit/Power/devices/battery_BAT0"
    11.  
    12. print "count, unixtime, proc_remaining_capacity, proc_present_voltage, devkit_percentage, devkit_voltage"
    13.  
    14. count = 0
    15. while 1 :
    16.   commands.getstatusoutput("%s mousemove %d %d" % (XDOTOOL, random.randrange(0,800), random.randrange(0, 480)))
    17.   battery_state = open(BATTERY_STATE).read().splitlines()
    18.   for line in battery_state :
    19.     if line.startswith("remaining capacity :") :
    20.       proc_remaining_capacity = int(line.lstrip("remaining capacity : ").rstrip("mAh"))
    21.     elif line.startswith("present voltage :") :
    22.       proc_present_voltage = int(line.lstrip("present voltage : ").rstrip("mV"))
    23.   devkit_state = commands.getoutput(DEVKIT_POWER).splitlines()
    24.   for line in devkit_state :
    25.     line = line.strip()
    26.     if line.startswith("percentage :") :
    27.       devkit_percentage = int(line.lstrip("percentage :").rstrip(\%))
    28.     elif line.startswith("voltage :") :
    29.       devkit_voltage = float(line.lstrip("voltage :").rstrip(’V’)) * 1000
    30.   print "%d, %d, %d, %d, %d, %d" % (count, time.time(), proc_remaining_capacity, proc_present_voltage, devkit_percentage, devkit_voltage)
    31.   sys.stdout.flush()
    32.   time.sleep(60)
    33.   count += 1