Recherche avancée

Médias (91)

Autres articles (63)

  • Websites made ​​with MediaSPIP

    2 mai 2011, par

    This page lists some websites based on MediaSPIP.

  • Creating farms of unique websites

    13 avril 2011, par

    MediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
    This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

Sur d’autres sites (10541)

  • What is data anonymization in web analytics ?

    11 février 2020, par Joselyn Khor — Analytics Tips, Privacy

    Collecting information via web analytics platforms is needed to help a website grow and improve. When doing so, it’s best to strike a balance between getting valuable insights, and keeping the trust of your users by protecting their privacy.

    This means not collecting or processing any personally identifiable information (PII). But what if your organisation requires you to collect PII ?

    That’s where data anonymization comes in.

    What is data anonymization ?

    Data anonymization makes identifiable information unidentifiable. This is done through data processing techniques which remove or modify PII data. So data becomes anonymous and can’t be linked to any individual.

    In the context of web analytics, data anonymization is handy because you can collect useful data while protecting the privacy of website visitors.

    Why is data anonymization important ?

    Through modern threats of identity theft, credit card fraud and the like, data anonymization is a way to protect the identity and privacy of individuals. As well as protect private and sensitive information of organisations. 

    Data anonymization lets you follow the many laws around the world which protect user privacy. These laws provide safeguards around collecting personal data or personally identifiable information (PII), so data anonymization is a good solution to ensure you’re not processing such sensitive information.

    In some cases, implementing data anonymization techniques means you can avoid having to show your users a consent screen. Which means you may not need to ask for consent in order to track data. This is a bonus as consent screens can annoy and stop people from engaging with your site.

    GDPR and data anonymization

    Matomo Analytics GDPR Google Analytics

    The GDPR is a law in the EU that limits the collection and processing of personal data. The aim is to give people more control over their online personal information. Which is why website owners need to follow certain rules to become GDPR compliant and protect user privacy. According to the GDPR, you can be fined up to 4% of your yearly revenue for data breaches or non-compliance. 

    In the case of web analytics, tools can be easily made compliant by following a number of steps

    This is why anonymizing data is a big deal.

    Anonymized data isn’t personal data according to the GDPR : 

    “The principles of data protection should therefore not apply to anonymous information, namely information which does not relate to an identified or identifiable natural person or to personal data rendered anonymous in such a manner that the data subject is not or no longer identifiable.”

    This means, you still get the best of both worlds. By anonymizing data, you’re still able to collect useful information like visitor behavioural data.

    US privacy laws and data anonymization

    In the US, there isn’t one single law that governs the protection of personal data, called personally identifiable information (PII). There are hundreds of federal and state laws that protect the personal data of US residents. As well as, industry-specific statutes related to data privacy, like the California Consumer Privacy Act (CCPA) and the Health Insurance Portability and Accountability Act (HIPAA).

    Website owners in the US need to know exactly what laws govern their area of business in order to follow them.

    A general guideline is to protect user privacy regardless of whether you are or aren’t allowed to collect PII. This means anonymizing identifiable information so your website users aren’t put at risk.

    Data anonymization techniques in Matomo Analytics

    If you carry these out, you won’t need to ask your website visitors for tracking consent since anonymized data is no longer considered personal data under the GDPR.

    The techniques listed above make it easy for you when using a tool like Matomo, as they are automatically anonymized.

    Tools like Google Analytics on the other hand don’t provide some of the privacy options and leave it up to you to take on the burden of implementation without providing steps.

    Data anonymization tools

    If you’re a website owner who wants to grow your business or learn more about your website visitors, privacy-friendly tools like Matomo Analytics are a great option. By following the easy steps to be GDPR compliant, you can anonymize all data that could put your visitors at risk.

  • CD-R Read Speed Experiments

    21 mai 2011, par Multimedia Mike — Science Projects, Sega Dreamcast

    I want to know how fast I can really read data from a CD-R. Pursuant to my previous musings on this subject, I was informed that it is inadequate to profile reading just any file from a CD-R since data might be read faster or slower depending on whether the data is closer to the inside or the outside of the disc.

    Conclusion / Executive Summary
    It is 100% true that reading data from the outside of a CD-R is faster than reading data from the inside. Read on if you care to know the details of how I arrived at this conclusion, and to find out just how much speed advantage there is to reading from the outside rather than the inside.

    Science Project Outline

    • Create some sample CD-Rs with various properties
    • Get a variety of optical drives
    • Write a custom program that profiles the read speed

    Creating The Test Media
    It’s my understanding that not all CD-Rs are created equal. Fortunately, I have 3 spindles of media handy : Some plain-looking Memorex discs, some rather flamboyant Maxell discs, and those 80mm TDK discs :



    My approach for burning is to create a single file to be burned into a standard ISO-9660 filesystem. The size of the file will be the advertised length of the CD-R minus 1 megabyte for overhead— so, 699 MB for the 120mm discs, 209 MB for the 80mm disc. The file will contain a repeating sequence of 0..0xFF bytes.

    Profiling
    I don’t want to leave this to the vagaries of any filesystem handling layer so I will conduct this experiment at the sector level. Profiling program outline :

    • Read the CD-ROM TOC and get the number of sectors that comprise the data track
    • Profile reading the first 20 MB of sectors
    • Profile reading 20 MB of sectors in the middle of the track
    • Profile reading the last 20 MB of sectors

    Unfortunately, I couldn’t figure out the raw sector reading on modern Linux incarnations (which is annoying since I remember it being pretty straightforward years ago). So I left it to the filesystem after all. New algorithm :

    • Open the single, large file on the CD-R and query the file length
    • Profile reading the first 20 MB of data, 512 kbytes at a time
    • Profile reading 20 MB of sectors in the middle of the track (starting from filesize / 2 - 10 MB), 512 kbytes at a time
    • Profile reading the last 20 MB of sectors (starting from filesize - 20MB), 512 kbytes at a time

    Empirical Data
    I tested the program in Linux using an LG Slim external multi-drive (seen at the top of the pile in this post) and one of my Sega Dreamcast units. I gathered the median value of 3 runs for each area (inner, middle, and outer). I also conducted a buffer flush in between Linux runs (as root : 'sync; echo 3 > /proc/sys/vm/drop_caches').

    LG Slim external multi-drive (reading from inner, middle, and outer areas in kbytes/sec) :

    • TDK-80mm : 721, 897, 1048
    • Memorex-120mm : 1601, 2805, 3623
    • Maxell-120mm : 1660, 2806, 3624

    So the 120mm discs can range from about 10.5X all the way up to a full 24X on this drive. For whatever reason, the 80mm disc fares a bit worse — even at the inner track — with a range of 4.8X - 7X.

    Sega Dreamcast (reading from inner, middle, and outer areas in kbytes/sec) :

    • TDK-80mm : 502, 632, 749
    • Memorex-120mm : 499, 889, 1143
    • Maxell-120mm : 500, 890, 1156

    It’s interesting that the 80mm disc performed comparably to the 120mm discs in the Dreamcast, in contrast to the LG Slim drive. Also, the results are consistent with my previous profiling experiments, which largely only touched the inner area. The read speeds range from 3.3X - 7.7X. The middle of a 120mm disc reads at about 6X.

    Implications
    A few thoughts regarding these results :

    • Since the very definition of 1X is the minimum speed necessary to stream data from an audio CD, then presumably, original 1X CD-ROM drives would have needed to be capable of reading 1X from the inner area. I wonder what the max read speed at the outer edges was ? It’s unlikely I would be able to get a 1X drive working easily in this day and age since the earliest CD-ROM drives required custom controllers.
    • I think 24X is the max rated read speed for CD-Rs, at least for this drive. This implies that the marketing literature only cites the best possible numbers. I guess this is no surprise, similar to how monitors and TVs have always been measured by their diagonal dimension.
    • Given this data, how do you engineer an ISO-9660 filesystem image so that the timing-sensitive multimedia files live on the outermost track ? In the Dreamcast case, if you can guarantee your FMV files will live somewhere between the middle and the end of the disc, you should be able to count on a bitrate of at least 900 kbytes/sec.

    Source Code
    Here is the program I wrote for profiling. Note that the filename is hardcoded (#define FILENAME). Compiling for Linux is a simple 'gcc -Wall profile-cdr.c -o profile-cdr'. Compiling for Dreamcast is performed in the standard KallistiOS manner (people skilled in the art already know what they need to know) ; the only variation is to compile with the '-D_arch_dreamcast' flag, which the default KOS environment adds anyway.

    C :
    1. #ifdef _arch_dreamcast
    2.   #include <kos .h>
    3.  
    4.   /* map I/O functions to their KOS equivalents */
    5.   #define open fs_open
    6.   #define lseek fs_seek
    7.   #define read fs_read
    8.   #define close fs_close
    9.  
    10.   #define FILENAME "/cd/bigfile"
    11. #else
    12.   #include <stdio .h>
    13.   #include <sys /types.h>
    14.   #include </sys><sys /stat.h>
    15.   #include </sys><sys /time.h>
    16.   #include <fcntl .h>
    17.   #include <unistd .h>
    18.  
    19.   #define FILENAME "/media/Full disc/bigfile"
    20. #endif
    21.  
    22. /* Get a current absolute millisecond count ; it doesn’t have to be in
    23. * reference to anything special. */
    24. unsigned int get_current_milliseconds()
    25. {
    26. #ifdef _arch_dreamcast
    27.   return timer_ms_gettime64() ;
    28. #else
    29.   struct timeval tv ;
    30.   gettimeofday(&tv, NULL) ;
    31.   return tv.tv_sec * 1000 + tv.tv_usec / 1000 ;
    32. #endif
    33. }
    34.  
    35. #define READ_SIZE (20 * 1024 * 1024)
    36. #define READ_BUFFER_SIZE (512 * 1024)
    37.  
    38. int main()
    39. {
    40.   int i, j ;
    41.   int fd ;
    42.   char read_buffer[READ_BUFFER_SIZE] ;
    43.   off_t filesize ;
    44.   unsigned int start_time, end_time ;
    45.  
    46.   fd = open(FILENAME, O_RDONLY) ;
    47.   if (fd == -1)
    48.   {
    49.     printf("could not open %s\n", FILENAME) ;
    50.     return 1 ;
    51.   }
    52.   filesize = lseek(fd, 0, SEEK_END) ;
    53.  
    54.   for (i = 0 ; i <3 ; i++)
    55.   {
    56.     if (i == 0)
    57.     {
    58.       printf("reading inner 20 MB...\n") ;
    59.       lseek(fd, 0, SEEK_SET) ;
    60.     }
    61.     else if (i == 1)
    62.     {
    63.       printf("reading middle 20 MB...\n") ;
    64.       lseek(fd, (filesize / 2) - (READ_SIZE / 2), SEEK_SET) ;
    65.     }
    66.     else
    67.     {
    68.       printf("reading outer 20 MB...\n") ;
    69.       lseek(fd, filesize - READ_SIZE, SEEK_SET) ;
    70.     }
    71.     /* read 20 MB ; 40 chunks of 1/2 MB */
    72.     start_time = get_current_milliseconds() ;
    73.     for (j = 0 ; j <(READ_SIZE / READ_BUFFER_SIZE) ; j++)
    74.       if (read(fd, read_buffer, READ_BUFFER_SIZE) != READ_BUFFER_SIZE)
    75.       {
    76.         printf("read error\n") ;
    77.         break ;
    78.       }
    79.     end_time = get_current_milliseconds() ;
    80.     printf("%d - %d = %d ms => %d kbytes/sec\n",
    81.       end_time, start_time, end_time - start_time,
    82.       READ_SIZE / (end_time - start_time)) ;
    83.   }
    84.  
    85.   close(fd) ;
    86.  
    87.   return 0 ;
    88. }
  • How to keep the file size of a stream small and have manycam show a live picture ?

    6 juillet 2017, par P. Dee

    I am using this command

    ffmpeg -i "rtsp://184.72.239.149/vod/mp4:BigBuckBunny_175k.mov" "C:\wamp\www\streaming.mjpeg"

    to stream to "C :\wamp\www\streaming.mjpeg". Then I am using SimpleHTTPServer to create a web server for this folder.

    Then I am pointing ManyCam’s ip camera to the address of the file on the web server

    http://127.0.0.1:8000/streaming.mjpeg

    And select it in ManyCam.

    As a result ffmpeg creates a file that gets bigger and bigger and ManyCam shows an endless time-lapsed loop of what the camera records or recorded minutes ago.

    How to keep the file size small and have ManyCam show a live video feed ?