
Recherche avancée
Médias (29)
-
#7 Ambience
16 octobre 2011, par
Mis à jour : Juin 2015
Langue : English
Type : Audio
-
#6 Teaser Music
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#5 End Title
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#3 The Safest Place
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#4 Emo Creates
15 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#2 Typewriter Dance
15 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
Autres articles (56)
-
Ajouter notes et légendes aux images
7 février 2011, parPour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
Modification lors de l’ajout d’un média
Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...) -
Demande de création d’un canal
12 mars 2010, parEn fonction de la configuration de la plateforme, l’utilisateur peu avoir à sa disposition deux méthodes différentes de demande de création de canal. La première est au moment de son inscription, la seconde, après son inscription en remplissant un formulaire de demande.
Les deux manières demandent les mêmes choses fonctionnent à peu près de la même manière, le futur utilisateur doit remplir une série de champ de formulaire permettant tout d’abord aux administrateurs d’avoir des informations quant à (...) -
Librairies et binaires spécifiques au traitement vidéo et sonore
31 janvier 2010, parLes logiciels et librairies suivantes sont utilisées par SPIPmotion d’une manière ou d’une autre.
Binaires obligatoires FFMpeg : encodeur principal, permet de transcoder presque tous les types de fichiers vidéo et sonores dans les formats lisibles sur Internet. CF ce tutoriel pour son installation ; Oggz-tools : outils d’inspection de fichiers ogg ; Mediainfo : récupération d’informations depuis la plupart des formats vidéos et sonores ;
Binaires complémentaires et facultatifs flvtool2 : (...)
Sur d’autres sites (7808)
-
FFmpeg and Code Coverage Tools
21 août 2010, par Multimedia Mike — FATE Server, PythonCode coverage tools likely occupy the same niche as profiling tools : Tools that you’re supposed to use somewhere during the software engineering process but probably never quite get around to it, usually because you’re too busy adding features or fixing bugs. But there may come a day when you wish to learn how much of your code is actually being exercised in normal production use. For example, the team charged with continuously testing the FFmpeg project, would be curious to know how much code is being exercised, especially since many of the FATE test specs explicitly claim to be "exercising XYZ subsystem".
The primary GNU code coverage tool is called gcov and is probably already on your GNU-based development system. I set out to determine how much FFmpeg source code is exercised while running the full FATE suite. I ran into some problems when trying to use gcov on a project-wide scale. I spackled around those holes with some very ad-hoc solutions. I’m sure I was just overlooking some more obvious solutions about which you all will be happy to enlighten me.
Results
I’ve learned to cut to the chase earlier in blog posts (results first, methods second). With that, here are the results I produced from this experiment. This Google spreadsheet contains 3 sheets : The first contains code coverage stats for a bunch of FFmpeg C files sorted first by percent coverage (ascending), then by number of lines (descending), thus highlighting which files have the most uncovered code (ffserver.c currently tops that chart). The second sheet has files for which no stats were generated. The third sheet has "problems". These files were rejected by my ad-hoc script.Here’s a link to the data in CSV if you want to play with it yourself.
Using gcov with FFmpeg
To instrument a program for gcov analysis, compile and link the target program with the -fprofile-arcs and -ftest-coverage options. These need to be applied at both the compile and link stages, so in the case of FFmpeg, configure with :./configure \ —extra-cflags="-fprofile-arcs -ftest-coverage" \ —extra-ldflags="-fprofile-arcs -ftest-coverage"
The building process results in a bunch of .gcno files which pertain to code coverage. After running the program as normal, a bunch of .gcda files are generated. To get coverage statistics from these files, run
'gcov sourcefile.c'
. This will print some basic statistics as well as generate a corresponding .gcov file with more detailed information about exactly which lines have been executed, and how many times.Be advised that the source file must either live in the same directory from which gcov is invoked, or else the path to the source must be given to gcov via the
'-o, --object-directory'
option.Resetting Statistics
Statistics in the .gcda are cumulative. Should you wish to reset the statistics, doing this in the build directory should suffice :find . -name "*.gcda" | xargs rm -f
Getting Project-Wide Data
As mentioned, I had to get a little creative here to get a big picture of FFmpeg code coverage. After building FFmpeg with the code coverage options and running FATE,for file in `find . -name "*.c"` \ do \ echo "*****" $file \ gcov -o `dirname $file` `basename $file` \ done > ffmpeg-code-coverage.txt 2>&1
After that, I ran the ffmpeg-code-coverage.txt file through a custom Python script to print out the 3 CSV files that I later dumped into the Google Spreadsheet.
Further Work
I’m sure there are better ways to do this, and I’m sure you all will let me know what they are. But I have to get the ball rolling somehow.There’s also TestCocoon. I’d like to try that program and see if it addresses some of gcov’s shortcomings (assuming they are indeed shortcomings rather than oversights).
Source for script : process-gcov-slop.py
PYTHON :-
# !/usr/bin/python
-
-
import re
-
-
lines = open("ffmpeg-code-coverage.txt").read().splitlines()
-
no_coverage = ""
-
coverage = "filename, % covered, total lines\n"
-
problems = ""
-
-
stats_exp = re.compile(’Lines executed :(\d+\.\d+)% of (\d+)’)
-
for i in xrange(len(lines)) :
-
line = lines[i]
-
if line.startswith("***** ") :
-
filename = line[line.find(’./’)+2 :]
-
i += 1
-
if lines[i].find(":cannot open graph file") != -1 :
-
no_coverage += filename + ’\n’
-
else :
-
while lines[i].find(filename) == -1 and not lines[i].startswith("***** ") :
-
i += 1
-
try :
-
(percent, total_lines) = stats_exp.findall(lines[i+1])[0]
-
coverage += filename + ’, ’ + percent + ’, ’ + total_lines + ’\n’
-
except IndexError :
-
problems += filename + ’\n’
-
-
open("no_coverage.csv", ’w’).write(no_coverage)
-
open("coverage.csv", ’w’).write(coverage)
-
open("problems.csv", ’w’).write(problems)
-
-
Monster Battery Power Revisited
28 mai 2010, par Multimedia Mike — Python, Science ProjectsSo I have this new fat netbook battery and I performed an experiment to determine how long it really lasts. In my last post on the matter, it was suggested that I should rely on the information that gnome-power-manager is giving me. However, I have rarely seen GPM report more than about 2 hours of charge ; even on a full battery, it only reports 3h25m when I profiled it as lasting over 5 hours in my typical use. So I started digging to understand how GPM gets its numbers and determine if, perhaps, it’s not getting accurate data from the system.
I started poking around /proc for the data I wanted. You can learn a lot in /proc as long as you know the right question to ask. I had to remember what the power subsystem is called — ACPI — and this led me to /proc/acpi/battery/BAT0/state which has data such as :
present : yes capacity state : ok charging state : charged present rate : unknown remaining capacity : 100 mAh present voltage : 8326 mV
"Remaining capacity" rated in mAh is a little odd ; I would later determine that this should actually be expressed as a percentage (i.e., 100% charge at the time of this reading). Examining the GPM source code, it seems to determine as a function of the current CPU load (queried via /proc/stat) and the battery state queried via a facility called devicekit. I couldn’t immediately find any source code to the latter but I was able to install a utility called ’devkit-power’. Mostly, it appears to rehash data already found in the above /proc file.
Curiously, the file /proc/acpi/battery/BAT0/info, which displays essential information about the battery, reports the design capacity of my battery as only 4400 mAh which is true for the original battery ; the new monster battery is supposed to be 10400 mAh. I can imagine that all of these data points could be conspiring to under-report my remaining battery life.
Science project : Repeat the previous power-related science project but also parse and track the remaining capacity and present voltage fields from the battery state proc file.
Let’s skip straight to the results (which are consistent with my last set of results in terms of longevity) :
So there is definitely something strange going on with the reporting— the 4400 mAh battery reports discharge at a linear rate while the 10400 mAh battery reports precipitous dropoff after 60%.
Another curious item is that my script broke at first when there was 20% power remaining which, as you can imagine, is a really annoying time to discover such a bug. At that point, the "time to empty" reported by devkit-power jumped from 0 seconds to 20 hours (the first state change observed for that field).
Here’s my script, this time elevated from Bash script to Python. It requires xdotool and devkit-power to be installed (both should be available in the package manager for a distro).
PYTHON :-
# !/usr/bin/python
-
-
import commands
-
import random
-
import sys
-
import time
-
-
XDOTOOL = "/usr/bin/xdotool"
-
BATTERY_STATE = "/proc/acpi/battery/BAT0/state"
-
DEVKIT_POWER = "/usr/bin/devkit-power -i /org/freedesktop/DeviceKit/Power/devices/battery_BAT0"
-
-
print "count, unixtime, proc_remaining_capacity, proc_present_voltage, devkit_percentage, devkit_voltage"
-
-
count = 0
-
while 1 :
-
commands.getstatusoutput("%s mousemove %d %d" % (XDOTOOL, random.randrange(0,800), random.randrange(0, 480)))
-
battery_state = open(BATTERY_STATE).read().splitlines()
-
for line in battery_state :
-
if line.startswith("remaining capacity :") :
-
proc_remaining_capacity = int(line.lstrip("remaining capacity : ").rstrip("mAh"))
-
elif line.startswith("present voltage :") :
-
proc_present_voltage = int(line.lstrip("present voltage : ").rstrip("mV"))
-
devkit_state = commands.getoutput(DEVKIT_POWER).splitlines()
-
for line in devkit_state :
-
line = line.strip()
-
if line.startswith("percentage :") :
-
devkit_percentage = int(line.lstrip("percentage :").rstrip(’\%’))
-
elif line.startswith("voltage :") :
-
devkit_voltage = float(line.lstrip("voltage :").rstrip(’V’)) * 1000
-
print "%d, %d, %d, %d, %d, %d" % (count, time.time(), proc_remaining_capacity, proc_present_voltage, devkit_percentage, devkit_voltage)
-
sys.stdout.flush()
-
time.sleep(60)
-
count += 1
-
-
Revision 36780 : On n’a plus besoin du pipeline body_prive puisque l’on passe par le cron ...
31 mars 2010, par kent1@… — LogOn n’a plus besoin du pipeline body_prive puisque l’on passe par le cron On détermine mieux le chemin des fichiers de saveauto pour le pipeline "mes_fichiers_a_sauver"