Recherche avancée

Médias (1)

Mot : - Tags -/MediaSPIP 0.2

Autres articles (88)

  • Mise à disposition des fichiers

    14 avril 2011, par

    Par défaut, lors de son initialisation, MediaSPIP ne permet pas aux visiteurs de télécharger les fichiers qu’ils soient originaux ou le résultat de leur transformation ou encodage. Il permet uniquement de les visualiser.
    Cependant, il est possible et facile d’autoriser les visiteurs à avoir accès à ces documents et ce sous différentes formes.
    Tout cela se passe dans la page de configuration du squelette. Il vous faut aller dans l’espace d’administration du canal, et choisir dans la navigation (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

  • Gestion des droits de création et d’édition des objets

    8 février 2011, par

    Par défaut, beaucoup de fonctionnalités sont limitées aux administrateurs mais restent configurables indépendamment pour modifier leur statut minimal d’utilisation notamment : la rédaction de contenus sur le site modifiables dans la gestion des templates de formulaires ; l’ajout de notes aux articles ; l’ajout de légendes et d’annotations sur les images ;

Sur d’autres sites (11163)

  • Monster Battery Power Revisited

    28 mai 2010, par Multimedia Mike — Python, Science Projects

    So I have this new fat netbook battery and I performed an experiment to determine how long it really lasts. In my last post on the matter, it was suggested that I should rely on the information that gnome-power-manager is giving me. However, I have rarely seen GPM report more than about 2 hours of charge ; even on a full battery, it only reports 3h25m when I profiled it as lasting over 5 hours in my typical use. So I started digging to understand how GPM gets its numbers and determine if, perhaps, it’s not getting accurate data from the system.

    I started poking around /proc for the data I wanted. You can learn a lot in /proc as long as you know the right question to ask. I had to remember what the power subsystem is called — ACPI — and this led me to /proc/acpi/battery/BAT0/state which has data such as :

    present :                 yes
    capacity state :          ok
    charging state :          charged
    present rate :            unknown
    remaining capacity :      100 mAh
    present voltage :         8326 mV
    

    "Remaining capacity" rated in mAh is a little odd ; I would later determine that this should actually be expressed as a percentage (i.e., 100% charge at the time of this reading). Examining the GPM source code, it seems to determine as a function of the current CPU load (queried via /proc/stat) and the battery state queried via a facility called devicekit. I couldn’t immediately find any source code to the latter but I was able to install a utility called ’devkit-power’. Mostly, it appears to rehash data already found in the above /proc file.

    Curiously, the file /proc/acpi/battery/BAT0/info, which displays essential information about the battery, reports the design capacity of my battery as only 4400 mAh which is true for the original battery ; the new monster battery is supposed to be 10400 mAh. I can imagine that all of these data points could be conspiring to under-report my remaining battery life.

    Science project : Repeat the previous power-related science project but also parse and track the remaining capacity and present voltage fields from the battery state proc file.

    Let’s skip straight to the results (which are consistent with my last set of results in terms of longevity) :



    So there is definitely something strange going on with the reporting— the 4400 mAh battery reports discharge at a linear rate while the 10400 mAh battery reports precipitous dropoff after 60%.

    Another curious item is that my script broke at first when there was 20% power remaining which, as you can imagine, is a really annoying time to discover such a bug. At that point, the "time to empty" reported by devkit-power jumped from 0 seconds to 20 hours (the first state change observed for that field).

    Here’s my script, this time elevated from Bash script to Python. It requires xdotool and devkit-power to be installed (both should be available in the package manager for a distro).

    PYTHON :
    1. # !/usr/bin/python
    2.  
    3. import commands
    4. import random
    5. import sys
    6. import time
    7.  
    8. XDOTOOL = "/usr/bin/xdotool"
    9. BATTERY_STATE = "/proc/acpi/battery/BAT0/state"
    10. DEVKIT_POWER = "/usr/bin/devkit-power -i /org/freedesktop/DeviceKit/Power/devices/battery_BAT0"
    11.  
    12. print "count, unixtime, proc_remaining_capacity, proc_present_voltage, devkit_percentage, devkit_voltage"
    13.  
    14. count = 0
    15. while 1 :
    16.   commands.getstatusoutput("%s mousemove %d %d" % (XDOTOOL, random.randrange(0,800), random.randrange(0, 480)))
    17.   battery_state = open(BATTERY_STATE).read().splitlines()
    18.   for line in battery_state :
    19.     if line.startswith("remaining capacity :") :
    20.       proc_remaining_capacity = int(line.lstrip("remaining capacity : ").rstrip("mAh"))
    21.     elif line.startswith("present voltage :") :
    22.       proc_present_voltage = int(line.lstrip("present voltage : ").rstrip("mV"))
    23.   devkit_state = commands.getoutput(DEVKIT_POWER).splitlines()
    24.   for line in devkit_state :
    25.     line = line.strip()
    26.     if line.startswith("percentage :") :
    27.       devkit_percentage = int(line.lstrip("percentage :").rstrip(\%))
    28.     elif line.startswith("voltage :") :
    29.       devkit_voltage = float(line.lstrip("voltage :").rstrip(’V’)) * 1000
    30.   print "%d, %d, %d, %d, %d, %d" % (count, time.time(), proc_remaining_capacity, proc_present_voltage, devkit_percentage, devkit_voltage)
    31.   sys.stdout.flush()
    32.   time.sleep(60)
    33.   count += 1
  • The 11th Hour RoQ Variation

    12 avril 2012, par Multimedia Mike — Game Hacking, dreamroq, Reverse Engineering, roq, Vector Quantization

    I have been looking at the RoQ file format almost as long as I have been doing practical multimedia hacking. However, I have never figured out how the RoQ format works on The 11th Hour, which was the game for which the RoQ format was initially developed. When I procured the game years ago, I remember finding what appeared to be RoQ files and shoving them through the open source decoders but not getting the right images out.

    I decided to dust off that old copy of The 11th Hour and have another go at it.



    Baseline
    The game consists of 4 CD-ROMs. Each disc has a media/ directory that has a series of files bearing the extension .gjd, likely the initials of one Graeme J. Devine. These are resource files which are merely headerless concatenations of other files. Thus, at first glance, one file might appear to be a single RoQ file. So that’s the source of some of the difficulty : Sending an apparent RoQ .gjd file through a RoQ player will often cause the program to complain when it encounters the header of another RoQ file.

    I have uploaded some samples to the usual place.

    However, even the frames that a player can decode (before encountering a file boundary within the resource file) look wrong.

    Investigating Codebooks Using dreamroq
    I wrote dreamroq last year– an independent RoQ playback library targeted towards embedded systems. I aimed it at a gjd file and quickly hit a codebook error.

    RoQ is a vector quantizer video codec that maintains a codebook of 256 2×2 pixel vectors. In the Quake III and later RoQ files, these are transported using a YUV 4:2:0 colorspace– 4 Y samples, a U sample, and a V sample to represent 4 pixels. This totals 6 bytes per vector. A RoQ codebook chunk contains a field that indicates the number of 2×2 vectors as well as the number of 4×4 vectors. The latter vectors are each comprised of 4 2×2 vectors.

    Thus, the total size of a codebook chunk ought to be (# of 2×2 vectors) * 6 + (# of 4×4 vectors) * 4.

    However, this is not the case with The 11th Hour RoQ files.

    Longer Codebooks And Mystery Colorspace
    Juggling the numbers for a few of the codebook chunks, I empirically determined that the 2×2 vectors are represented by 10 bytes instead of 6. Now I need to determine what exactly these 10 bytes represent.

    I should note that I suspect that everything else about these files lines up with successive generations of the format. For example if a file has 640×320 resolution, that amounts to 40×20 macroblocks. dreamroq iterates through 40×20 8×8 blocks and precisely exhausts the VQ bitstream. So that all looks valid. I’m just puzzled on the codebook format.

    Here is an example codebook dump :

    ID 0x1002, len = 0x0000014C, args = 0x1C0D
      0 : 00 00 00 00 00 00 00 00 80 80
      1 : 08 07 00 00 1F 5B 00 00 7E 81
      2 : 00 00 15 0F 00 00 40 3B 7F 84
      3 : 00 00 00 00 3A 5F 18 13 7E 84
      4 : 00 00 00 00 3B 63 1B 17 7E 85
      5 : 18 13 00 00 3C 63 00 00 7E 88
      6 : 00 00 00 00 00 00 59 3B 7F 81
      7 : 00 00 56 23 00 00 61 2B 80 80
      8 : 00 00 2F 13 00 00 79 63 81 83
      9 : 00 00 00 00 5E 3F AC 9B 7E 81
      10 : 1B 17 00 00 B6 EF 77 AB 7E 85
      11 : 2E 43 00 00 C1 F7 75 AF 7D 88
      12 : 6A AB 28 5F B6 B3 8C B3 80 8A
      13 : 86 BF 0A 03 D5 FF 3A 5F 7C 8C
      14 : 00 00 9E 6B AB 97 F5 EF 7F 80
      15 : 86 73 C8 CB B6 B7 B7 B7 85 8B
      16 : 31 17 84 6B E7 EF FF FF 7E 81
      17 : 79 AF 3B 5F FC FF E2 FF 7D 87
      18 : DC FF AE EF B3 B3 B8 B3 85 8B
      19 : EF FF F5 FF BA B7 B6 B7 88 8B
      20 : F8 FF F7 FF B3 B7 B7 B7 88 8B
      21 : FB FF FB FF B8 B3 B4 B3 85 88
      22 : F7 FF F7 FF B7 B7 B9 B7 87 8B
      23 : FD FF FE FF B9 B7 BB B7 85 8A
      24 : E4 FF B7 EF FF FF FF FF 7F 83
      25 : FF FF AC EB FF FF FC FF 7F 83
      26 : CC C7 F7 FF FF FF FF FF 7F 81
      27 : FF FF FE FF FF FF FF FF 80 80
    

    Note that 0x14C (the chunk size) = 332, 0x1C and 0x0D (the chunk arguments — count of 2×2 and 4×4 vectors, respectively) are 28 and 13. 28 * 10 + 13 * 4 = 332, so the numbers check out.

    Do you see any patterns in the codebook ? Here are some things I tried :

    • Treating the last 2 bytes as U & V and treating the first 4 as the 4 Y samples :


    • Treating the last 2 bytes as U & V and treating the first 8 as 4 16-bit little-endian Y samples :


    • Disregarding the final 2 bytes and treating the first 8 bytes as 4 RGB565 pixels (both little- and big-endian, respectively, shown here) :


    • Based on the type of data I’m seeing in these movies (which appears to be intended as overlays), I figured that some of these bits might indicate transparency ; here is 15-bit big-endian RGB which disregards the top bit of each pixel :


    These images are taken from the uploaded sample bdpuz.gjd, apparently a component of the puzzle represented in this screenshot.

    Unseen Types
    It has long been rumored that early RoQ files could contain JPEG images. I finally found one such specimen. One of the files bundled early in the uploaded fhpuz.gjd sample contains a JPEG frame. It’s a standard JFIF file and can easily be decoded after separating the bytes from the resource using ‘dd’. JPEGs serve as intraframes in the coding scheme, with successive RoQ frames moving objects on top.

    However, a new chunk type showed up as well, one identified by 0×1030. I have never encountered this type. Where could I possibly find data about this ? Fortunately, iD Games recently posted all of their open sourced games at Github. Reading through the code for their official RoQ decoder, I see that this is called a RoQ_PACKET. The name and the code behind it are both supremely unhelpful. The code is basically a no-op. The payloads of the various RoQ_PACKETs from one sample are observed to be either 8784, 14752, or 14760 bytes in length. It’s very likely that this serves the same purpose as the JPEG intraframes.

    Other Tidbits
    I read through the readme.txt on the first game disc and found this nugget :

            g)      Animations displayed normally or in SPOOKY MODE
    

    SPOOKY MODE is blue-tinted grayscale with color cursors, puzzle
    and game pieces. It is the preferred display setting of the
    developers at Trilobyte. Just for fun, try out the SPOOKY
    MODE.

    The MobyGames screenshot page has a number of screenshots labeled as being captured in spooky mode. Color tricks ?

    Meanwhile, another twist arose as I kept tweaking dreamroq to deal with more RoQ weirdness : After modifying my dreamroq code to handle these 10-byte vectors, it eventually chokes on another codebook. These codebooks happen to have 6-byte vectors again ! Fortunately, I was already working on a scheme to automatically detect which codebook is in play (plugging the numbers into a formula and seeing which vector size checks out).

  • FFMPEG : Extracting 20 images from a video of variable length

    12 novembre 2013, par Vapire

    I've browsed the internet for this very intensively, but I didn't find what I needed, only variations of it which are not quite the thing I want to use.

    I've got several videos in different lengths and I want to extract 20 images out of every video from start to the end, to show the broadest impression of the video.

    So one video is 16m 47s long => 1007s in total => I have to make one snapshot of the video every 50 seconds.

    So I figured using the -r switch of ffmpeg with the value of 0.019860973 (eq 20/1007) but ffmpeg tells me that the framerate is too small for it...

    The only way I figured out to do it would be to write a script which calls ffmpeg with a manipulated -ss switch and using -vframes 1 but this is quite slow and a little bit off for me since ffmpegs numerates the images itself...

    Any suggestions or directions ?

    Thanks,
    Vapire