Recherche avancée

Médias (1)

Mot : - Tags -/copyleft

Autres articles (63)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Ajouter notes et légendes aux images

    7 février 2011, par

    Pour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
    Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
    Modification lors de l’ajout d’un média
    Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)

  • Encoding and processing into web-friendly formats

    13 avril 2011, par

    MediaSPIP automatically converts uploaded files to internet-compatible formats.
    Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
    Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
    Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
    All uploaded files are stored online in their original format, so you can (...)

Sur d’autres sites (7522)

  • is Cloud API's needed for Video Conversion to save huge time ?

    4 mai 2017, par user2224250

    I have seen a couple of ffmpeg software’s which converts a video x format (1.8 GB) to y format (1.8 GB) in less than 90 seconds

    For example IDealshare VideoGo

    When I work with ffmpeg in the terminal, these sort of conversions takes atleast one hour. Moreover, when I compare to the above software, am facing a very very big number interms of time.

    May be, do you think for these fast conversions, we must take help from third party cloud API’s (software’s) such as amazon elastic transcoder etc etc.

    Any pointers would be really appreciable !!

  • Continously running a PHP script waiting for videos to trancode

    12 mai 2017, par Ian

    I’m making a transcoding server which uses FFMPEG to convert videos to flv. After user uploads a video it’s queued for processing in amazon Simple Queue Service. System is linux ubuntu.

    Instead of running CRON each 1min I wonder if it would be possible to continously run several PHP scripts (dowload queued files, process downloaded etc). Each of them would have its own queue which would be read every 10s or so looking for new tasks.

    My question is :

    How to detect if the script is already running ? I’d run CRON each 1min and if one of the programs would not be running I’d load it again. How stuff like that is done on linux ? PID files ?

    thanks for help,
    ian

  • How to use (django-celery,RQ) worker to execute a video filetype conversion (ffmpeg) in django on heroku (My code works locally)

    15 janvier 2013, par GetItDone

    One part of my website includes a form that allows users to upload video. I use ffmpeg to convert the video to flv. My media and static files are stored on Amazon S3. I can get everything to work perfectly locally, however I can't seem to figure out how to use a worker to run the video conversion subprocess in production. I have dj-celery and rq installed in my app. The code in my view that I was able to get to work locally is :

    #views.py
    def upload_broadcast(request):
       if request.method == 'POST':
           form = VideoUploadForm(request.POST, request.FILES)
           if form.is_valid():
               new_video=form.save()
               def convert_to_flv(video):
                   filename = video.video_upload
                   sourcefile = "%s%s" % (settings.MEDIA_ROOT, filename)
                   flvfilename = "%s.flv" % video.id
                   imagefilename = "%s.png" % video.id
                   thumbnailfilename = "%svideos/flv/%s" % (settings.MEDIA_ROOT, imagefilename)
                   targetfile = "%svideos/flv/%s" % (settings.MEDIA_ROOT, flvfilename)
                   ffmpeg = "ffmpeg -i %s -acodec mp3 -ar 22050 -f flv -s 320x240 %s" % (sourcefile, targetfile)
                   grabimage = "ffmpeg -y -i %s -vframes 1 -ss 00:00:02 -an -vcodec png -f rawvideo -s 320x240 %s" % (sourcefile, thumbnailfilename)
                   print ("SOURCE: %s" % sourcefile)
                   print ("TARGET: %s" % targetfile)
                   print ("TARGET IMAGE: %s" % thumbnailfilename)
                   print ("FFMPEG TASK CODE: %s" % ffmpeg)
                   print ("IMAGE TASK CODE: %s" % grabimage)
                   try:
                       ffmpegresult = subprocess.call(ffmpeg)
                       print "---------------FFMPEG---------------"
                       print ffmpegresult
                   except:
                       print "Not working."
                   try:
                       videothumbnail = subprocess.call(grabimage)
                       print "---------------IMAGE---------------"
                       print videothumbnail
                   except:
                       print "Not working."
                   video.flvfilename = flvfilename
                   video.videothumbnail = imagefilename
                   video.save()

               convert_to_flv(new_video)

               return HttpResponseRedirect('/video_list/')
       else:
    ...

    This is my first time trying to use a worker (or ever pushing a project to production), so even with the documentation it is still unclear to me what I need to do. I have tried several different things but nothing seems to work. Is there just a simple way to tell celery to run the ffmpegresult = subprocess.call(ffmpeg) ? Thanks in advance for any help or insight.

    EDIT- Added heroku logs

    2013-01-10T20:58:57+00:00 app[web.1]: TARGET: /media/videos/flv/8.flv
    2013-01-10T20:58:57+00:00 app[web.1]: IMAGE TASK CODE: ffmpeg -y -i /media/videos/practice.wmv -vframes 1 -ss 00:00:02 - an -vcodec png -f rawvideo -s 320x240 /media/videos/flv/8.png
    2013-01-10T20:58:57+00:00 app[web.1]: SOURCE: /media/videos/practice.wmv
    2013-01-10T20:58:57+00:00 app[web.1]: FFMPEG TASK CODE: ffmpeg -i /media/videos/practice.wmv -acodec mp3 -ar 22050 -f fl v -s 320x240 /media/videos/flv/8.flv
    2013-01-10T20:58:57+00:00 app[web.1]: TARGET IMAGE: /media/videos/flv/8.png
    2013-01-10T20:58:57+00:00 app[web.1]: Not working.
    2013-01-10T20:58:57+00:00 app[web.1]: Not working.

    NEWER EDIT

    I tried adding a tasks.py and added the task :

    celery = Celery('tasks', broker='redis://guest@localhost//')

    @celery.task
    def ffmpeg_task(video):
       converted_file = subprocess.call(video)
       return converted_file

    then I changed the relevant section of my view to :

    ...
    try:
       ffmpeg_task.delay(ffmpeg)
       print "---------------FFMPEG---------------"
       print ffmpegresult
    except:
       print "Not working."
    ...

    My new logs are :

    2013-01-15T13:19:52+00:00 app[web.1]: TARGET IMAGE: /media/videos/flv/12.png
    2013-01-15T13:19:52+00:00 app[web.1]: SOURCE: /media/videos/practice.wmv
    2013-01-15T13:19:52+00:00 app[web.1]: FFMPEG TASK CODE: ffmpeg -i /media/videos/practice.wmv -acodec mp3 -ar 22050 -f fl v -s 320x240 /media/videos/flv/12.flv
    2013-01-15T13:19:52+00:00 app[web.1]: IMAGE TASK CODE: ffmpeg -y -i /media/videos/practice.wmv -vframes 1 -ss 00:00:02 -an -vcodec png -f rawvideo -s 320x240 /media/videos/flv/12.png
    2013-01-15T13:19:52+00:00 app[web.1]: TARGET: /media/videos/flv/12.flv
    2013-01-15T13:20:17+00:00 app[web.1]: 2013-01-15 13:20:17 [2] [CRITICAL] WORKER TIMEOUT (pid:12)
    2013-01-15T13:20:17+00:00 app[web.1]: 2013-01-15 13:20:17 [2] [CRITICAL] WORKER TIMEOUT (pid:12)
    2013-01-15T13:20:17+00:00 app[web.1]: 2013-01-15 13:20:17 [19] [INFO] Booting worker with pid: 19

    Am I completely missing something ? I'll keep trying, but will be very appreciative of any direction or assistance.