Recherche avancée

Médias (1)

Mot : - Tags -/biomaping

Autres articles (111)

  • Mise à jour de la version 0.1 vers 0.2

    24 juin 2013, par

    Explications des différents changements notables lors du passage de la version 0.1 de MediaSPIP à la version 0.3. Quelles sont les nouveautés
    Au niveau des dépendances logicielles Utilisation des dernières versions de FFMpeg (>= v1.2.1) ; Installation des dépendances pour Smush ; Installation de MediaInfo et FFprobe pour la récupération des métadonnées ; On n’utilise plus ffmpeg2theora ; On n’installe plus flvtool2 au profit de flvtool++ ; On n’installe plus ffmpeg-php qui n’est plus maintenu au (...)

  • Les formats acceptés

    28 janvier 2010, par

    Les commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
    ffmpeg -codecs ffmpeg -formats
    Les format videos acceptés en entrée
    Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
    Les formats vidéos de sortie possibles
    Dans un premier temps on (...)

  • Use, discuss, criticize

    13 avril 2011, par

    Talk to people directly involved in MediaSPIP’s development, or to people around you who could use MediaSPIP to share, enhance or develop their creative projects.
    The bigger the community, the more MediaSPIP’s potential will be explored and the faster the software will evolve.
    A discussion list is available for all exchanges between users.

Sur d’autres sites (7642)

  • FFmpeg and Code Coverage Tools

    21 août 2010, par Multimedia Mike — FATE Server, Python

    Code coverage tools likely occupy the same niche as profiling tools : Tools that you’re supposed to use somewhere during the software engineering process but probably never quite get around to it, usually because you’re too busy adding features or fixing bugs. But there may come a day when you wish to learn how much of your code is actually being exercised in normal production use. For example, the team charged with continuously testing the FFmpeg project, would be curious to know how much code is being exercised, especially since many of the FATE test specs explicitly claim to be "exercising XYZ subsystem".

    The primary GNU code coverage tool is called gcov and is probably already on your GNU-based development system. I set out to determine how much FFmpeg source code is exercised while running the full FATE suite. I ran into some problems when trying to use gcov on a project-wide scale. I spackled around those holes with some very ad-hoc solutions. I’m sure I was just overlooking some more obvious solutions about which you all will be happy to enlighten me.

    Results
    I’ve learned to cut to the chase earlier in blog posts (results first, methods second). With that, here are the results I produced from this experiment. This Google spreadsheet contains 3 sheets : The first contains code coverage stats for a bunch of FFmpeg C files sorted first by percent coverage (ascending), then by number of lines (descending), thus highlighting which files have the most uncovered code (ffserver.c currently tops that chart). The second sheet has files for which no stats were generated. The third sheet has "problems". These files were rejected by my ad-hoc script.

    Here’s a link to the data in CSV if you want to play with it yourself.

    Using gcov with FFmpeg
    To instrument a program for gcov analysis, compile and link the target program with the -fprofile-arcs and -ftest-coverage options. These need to be applied at both the compile and link stages, so in the case of FFmpeg, configure with :

      ./configure \
        —extra-cflags="-fprofile-arcs -ftest-coverage" \
        —extra-ldflags="-fprofile-arcs -ftest-coverage"
    

    The building process results in a bunch of .gcno files which pertain to code coverage. After running the program as normal, a bunch of .gcda files are generated. To get coverage statistics from these files, run 'gcov sourcefile.c'. This will print some basic statistics as well as generate a corresponding .gcov file with more detailed information about exactly which lines have been executed, and how many times.

    Be advised that the source file must either live in the same directory from which gcov is invoked, or else the path to the source must be given to gcov via the '-o, --object-directory' option.

    Resetting Statistics
    Statistics in the .gcda are cumulative. Should you wish to reset the statistics, doing this in the build directory should suffice :

      find . -name "*.gcda" | xargs rm -f
    

    Getting Project-Wide Data
    As mentioned, I had to get a little creative here to get a big picture of FFmpeg code coverage. After building FFmpeg with the code coverage options and running FATE,

    for file in `find . -name "*.c"` \
    do \
      echo "*****" $file \
      gcov -o `dirname $file` `basename $file` \
    done > ffmpeg-code-coverage.txt 2>&1
    

    After that, I ran the ffmpeg-code-coverage.txt file through a custom Python script to print out the 3 CSV files that I later dumped into the Google Spreadsheet.

    Further Work
    I’m sure there are better ways to do this, and I’m sure you all will let me know what they are. But I have to get the ball rolling somehow.

    There’s also TestCocoon. I’d like to try that program and see if it addresses some of gcov’s shortcomings (assuming they are indeed shortcomings rather than oversights).

    Source for script : process-gcov-slop.py

    PYTHON :
    1. # !/usr/bin/python
    2.  
    3. import re
    4.  
    5. lines = open("ffmpeg-code-coverage.txt").read().splitlines()
    6. no_coverage = ""
    7. coverage = "filename, % covered, total lines\n"
    8. problems = ""
    9.  
    10. stats_exp = re.compile(’Lines executed :(\d+\.\d+)% of (\d+)’)
    11. for i in xrange(len(lines)) :
    12.   line = lines[i]
    13.   if line.startswith("***** ") :
    14.     filename = line[line.find(’./’)+2 :]
    15.     i += 1
    16.     if lines[i].find(":cannot open graph file") != -1 :
    17.       no_coverage += filename + \n
    18.     else :
    19.       while lines[i].find(filename) == -1 and not lines[i].startswith("***** ") :
    20.         i += 1
    21.       try :
    22.         (percent, total_lines) = stats_exp.findall(lines[i+1])[0]
    23.         coverage += filename + ’, ’ + percent + ’, ’ + total_lines + \n
    24.       except IndexError :
    25.         problems += filename + \n
    26.  
    27. open("no_coverage.csv", ’w’).write(no_coverage)
    28. open("coverage.csv", ’w’).write(coverage)
    29. open("problems.csv", ’w’).write(problems)
  • Revision 31640 : - La librairie sfYaml n’arrive pas à parser un exemple du site de Yaml : ...

    18 septembre 2009, par marcimat@… — Log

    - La librairie sfYaml n’arrive pas à parser un exemple du site de Yaml : http://www.yaml.org/spec/1.2/spec.html#id2559548, exemple 2.12. La librairie SPYC (http://code.google.com/p/spyc/) s’en occupe quand à elle très bien. Par contre cette librairie n’a pas de gestion d’exception en cas d’erreur. On permet de la tester (pas active par défaut) avec define(’_LIB_YAML’,’spyc’) ; . Si elle convient, on la gardera.

  • libvpx 0.9.1 and FFmpeg 0.6

    18 juin 2010, par Multimedia Mike — VP8

    Great news : Hot on the heels of FFmpeg’s 0.6 release, the WebM project released version 0.9.1 of their libvpx. I can finally obsolete my last set of instructions on getting FFmpeg-svn working with libvpx 0.9.

    Building libvpx 0.9.1
    Do this to build libvpx 0.9.1 on Unix-like systems :

    libvpx’s build system has been firmed up a bit since version 0.9. It’s now smart enough to install when said target is invoked and it also builds the assembly language optimizations. Be advised that on 32- and 64-bit x86 machines, Yasm must be present (install either from source or through your package manager).

    Building FFmpeg 0.6
    To build the newly-released FFmpeg 0.6 :

    • Install Vorbis through your package manager if you care to encode WebM files with audio ; e.g., ’libvorbis-dev’ is the package you want on Ubuntu
    • Download FFmpeg 0.6 from the project’s download page
    • Configure FFmpeg with at least these options : ./configure --enable-libvpx --enable-libvorbis --enable-pthreads ; the final link step still seems to fail on Linux if the pthreads option is disabled
    • ’make’

    Verifying
    Check this out :

    $ ./ffmpeg -formats 2> /dev/null | grep WebM
      E webm            WebM file format
    

    $ ./ffmpeg -codecs 2> /dev/null | grep libvpx
    DEV libvpx libvpx VP8

    That means that this FFmpeg binary can mux a WebM file and can both decode and encode VP8 video via libvpx. If you’re wondering why the WebM format does not list a ’D’ indicating the ability to demux a WebM file, that’s because demuxing WebM is handled by the general Matroska demuxer.

    Doing Work
    Encode a WebM file :

    ffmpeg -i <input_file> <output_file.webm>

    FFmpeg just does the right thing when it seems that .webm extension on the output file. It’s almost magical.

    For instant gratification that the encoded file is valid, you can view it immediately using ’ffplay’, if that binary was built (done by default if the right support libraries are present). If ffplay is not present, you can always execute this command line to see some decode operation :

    ffmpeg -i <output_file.webm> -f framecrc -