
Recherche avancée
Médias (1)
-
Rennes Emotion Map 2010-11
19 octobre 2011, par
Mis à jour : Juillet 2013
Langue : français
Type : Texte
Autres articles (75)
-
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)
Sur d’autres sites (8873)
-
dnn_backend_native_layer_mathunary : add asin support
18 juin 2020, par Ting Fudnn_backend_native_layer_mathunary : add asin support
It can be tested with the model generated with below python script :
import tensorflow as tf
import numpy as np
import imageioin_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.asin(x)
x2 = tf.divide(x1, 3.1416/2) # pi/2
y = tf.identity(x2, name='dnn_out')sess=tf.Session()
sess.run(tf.global_variables_initializer())graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")output = sess.run(y, feed_dict=x : in_data)
imageio.imsave("out.jpg", np.squeeze(output))Signed-off-by : Ting Fu <ting.fu@intel.com>
Signed-off-by : Guo Yejun <yejun.guo@intel.com> -
merge/combine two FFMPEG commands together into one command
26 février 2021, par Mayank ThapliyalI have been processing videos for a while and I have been using ffmpeg to make my life easy. But there are two commands which I want to combine into single command :-


Step 1 :- Divide a video vertically into two parts and then stack them horizontally


ffmpeg -i usa.mp4 -filter_complex "[0]crop=iw:ih/2:0:0[top];[0]crop=iw:ih/2:0:oh[bottom];[top][bottom]hstack" -preset fast -c:a copy usa$.mp4


Step 2 :- Combine 3 videos into single video (the video from Step 1 will be in between the start.mp4 and end.mp4)


ffmpeg -i start.mp4 -i usa$.mp4 -i end.mp4 -vsync 2 -filter_complex "[0:v] [0:a] [1:v] [1:a] [2:v] [2:a] concat=n=3:v=1:a=1 [v] [a]" -map "[v]" -map "[a]" usa_.mp4


Can anyone please combine the videos into single command.I will be then able to save a lot of computing time(I guess that)


Thanks in advance


-
dnn_backend_native_layer_mathunary : add atanh support
29 juin 2020, par Ting Fudnn_backend_native_layer_mathunary : add atanh support
It can be tested with the model generated with below python script :
import tensorflow as tf
import numpy as np
import imageioin_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
please uncomment the part you want to test
x_sinh_1 = tf.sinh(x)
x_out = tf.divide(x_sinh_1, 1.176) # sinh(1.0)x_cosh_1 = tf.cosh(x)
x_out = tf.divide(x_cosh_1, 1.55) # cosh(1.0)x_tanh_1 = tf.tanh(x)
x__out = tf.divide(x_tanh_1, 0.77) # tanh(1.0)x_asinh_1 = tf.asinh(x)
x_out = tf.divide(x_asinh_1, 0.89) # asinh(1.0/1.1)x_acosh_1 = tf.add(x, 1.1)
x_acosh_2 = tf.acosh(x_acosh_1) # accept (1, inf)
x_out = tf.divide(x_acosh_2, 1.4) # acosh(2.1)x_atanh_1 = tf.divide(x, 1.1)
x_atanh_2 = tf.atanh(x_atanh_1) # accept (-1, 1)
x_out = tf.divide(x_atanh_2, 1.55) # atanhh(1.0/1.1)y = tf.identity(x_out, name='dnn_out') #please only preserve the x_out you want to test
sess=tf.Session()
sess.run(tf.global_variables_initializer())graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")output = sess.run(y, feed_dict=x : in_data)
imageio.imsave("out.jpg", np.squeeze(output))Signed-off-by : Ting Fu <ting.fu@intel.com>