
Recherche avancée
Médias (1)
-
Richard Stallman et le logiciel libre
19 octobre 2011, par
Mis à jour : Mai 2013
Langue : français
Type : Texte
Autres articles (91)
-
Keeping control of your media in your hands
13 avril 2011, parThe vocabulary used on this site and around MediaSPIP in general, aims to avoid reference to Web 2.0 and the companies that profit from media-sharing.
While using MediaSPIP, you are invited to avoid using words like "Brand", "Cloud" and "Market".
MediaSPIP is designed to facilitate the sharing of creative media online, while allowing authors to retain complete control of their work.
MediaSPIP aims to be accessible to as many people as possible and development is based on expanding the (...) -
Mise à jour de la version 0.1 vers 0.2
24 juin 2013, parExplications des différents changements notables lors du passage de la version 0.1 de MediaSPIP à la version 0.3. Quelles sont les nouveautés
Au niveau des dépendances logicielles Utilisation des dernières versions de FFMpeg (>= v1.2.1) ; Installation des dépendances pour Smush ; Installation de MediaInfo et FFprobe pour la récupération des métadonnées ; On n’utilise plus ffmpeg2theora ; On n’installe plus flvtool2 au profit de flvtool++ ; On n’installe plus ffmpeg-php qui n’est plus maintenu au (...) -
Les tâches Cron régulières de la ferme
1er décembre 2010, parLa gestion de la ferme passe par l’exécution à intervalle régulier de plusieurs tâches répétitives dites Cron.
Le super Cron (gestion_mutu_super_cron)
Cette tâche, planifiée chaque minute, a pour simple effet d’appeler le Cron de l’ensemble des instances de la mutualisation régulièrement. Couplée avec un Cron système sur le site central de la mutualisation, cela permet de simplement générer des visites régulières sur les différents sites et éviter que les tâches des sites peu visités soient trop (...)
Sur d’autres sites (10252)
-
What is a Cohort Report ? A Beginner’s Guide to Cohort Analysis
3 janvier 2024, par Erin -
swscale/x86/input.asm : add x86-optimized planer rgb2yuv functions
24 novembre 2021, par Mark Reidswscale/x86/input.asm : add x86-optimized planer rgb2yuv functions
sse2 only operates on 2 lanes per loop for to_y and to_uv functions, due
to the lack of pmulld instruction. Emulating pmulld with 2 pmuludq and shuffles
proved too costly and made to_uv functions slower then the c implementation.For to_y on sse2 only float functions are generated,
I was are not able outperform the c implementation on the integer pixel formats.For to_a on see4 only the float functions are generated.
sse2 and sse4 generated nearly identical performing code on integer pixel formats,
so only sse2/avx2 versions are generated.planar_gbrp_to_y_512_c : 1197.5
planar_gbrp_to_y_512_sse4 : 444.5
planar_gbrp_to_y_512_avx2 : 287.5
planar_gbrap_to_y_512_c : 1204.5
planar_gbrap_to_y_512_sse4 : 447.5
planar_gbrap_to_y_512_avx2 : 289.5
planar_gbrp9be_to_y_512_c : 1380.0
planar_gbrp9be_to_y_512_sse4 : 543.5
planar_gbrp9be_to_y_512_avx2 : 340.0
planar_gbrp9le_to_y_512_c : 1200.5
planar_gbrp9le_to_y_512_sse4 : 442.0
planar_gbrp9le_to_y_512_avx2 : 282.0
planar_gbrp10be_to_y_512_c : 1378.5
planar_gbrp10be_to_y_512_sse4 : 544.0
planar_gbrp10be_to_y_512_avx2 : 337.5
planar_gbrp10le_to_y_512_c : 1200.0
planar_gbrp10le_to_y_512_sse4 : 448.0
planar_gbrp10le_to_y_512_avx2 : 285.5
planar_gbrap10be_to_y_512_c : 1380.0
planar_gbrap10be_to_y_512_sse4 : 542.0
planar_gbrap10be_to_y_512_avx2 : 340.5
planar_gbrap10le_to_y_512_c : 1199.0
planar_gbrap10le_to_y_512_sse4 : 446.0
planar_gbrap10le_to_y_512_avx2 : 289.5
planar_gbrp12be_to_y_512_c : 10563.0
planar_gbrp12be_to_y_512_sse4 : 542.5
planar_gbrp12be_to_y_512_avx2 : 339.0
planar_gbrp12le_to_y_512_c : 1201.0
planar_gbrp12le_to_y_512_sse4 : 440.5
planar_gbrp12le_to_y_512_avx2 : 286.0
planar_gbrap12be_to_y_512_c : 1701.5
planar_gbrap12be_to_y_512_sse4 : 917.0
planar_gbrap12be_to_y_512_avx2 : 338.5
planar_gbrap12le_to_y_512_c : 1201.0
planar_gbrap12le_to_y_512_sse4 : 444.5
planar_gbrap12le_to_y_512_avx2 : 288.0
planar_gbrp14be_to_y_512_c : 1370.5
planar_gbrp14be_to_y_512_sse4 : 545.0
planar_gbrp14be_to_y_512_avx2 : 338.5
planar_gbrp14le_to_y_512_c : 1199.0
planar_gbrp14le_to_y_512_sse4 : 444.0
planar_gbrp14le_to_y_512_avx2 : 279.5
planar_gbrp16be_to_y_512_c : 1364.0
planar_gbrp16be_to_y_512_sse4 : 544.5
planar_gbrp16be_to_y_512_avx2 : 339.5
planar_gbrp16le_to_y_512_c : 1201.0
planar_gbrp16le_to_y_512_sse4 : 445.5
planar_gbrp16le_to_y_512_avx2 : 280.5
planar_gbrap16be_to_y_512_c : 1377.0
planar_gbrap16be_to_y_512_sse4 : 545.0
planar_gbrap16be_to_y_512_avx2 : 338.5
planar_gbrap16le_to_y_512_c : 1201.0
planar_gbrap16le_to_y_512_sse4 : 442.0
planar_gbrap16le_to_y_512_avx2 : 279.0
planar_gbrpf32be_to_y_512_c : 4113.0
planar_gbrpf32be_to_y_512_sse2 : 2438.0
planar_gbrpf32be_to_y_512_sse4 : 1068.0
planar_gbrpf32be_to_y_512_avx2 : 904.5
planar_gbrpf32le_to_y_512_c : 3818.5
planar_gbrpf32le_to_y_512_sse2 : 2024.5
planar_gbrpf32le_to_y_512_sse4 : 1241.5
planar_gbrpf32le_to_y_512_avx2 : 657.0
planar_gbrapf32be_to_y_512_c : 3707.0
planar_gbrapf32be_to_y_512_sse2 : 2444.0
planar_gbrapf32be_to_y_512_sse4 : 1077.0
planar_gbrapf32be_to_y_512_avx2 : 909.0
planar_gbrapf32le_to_y_512_c : 3822.0
planar_gbrapf32le_to_y_512_sse2 : 2024.5
planar_gbrapf32le_to_y_512_sse4 : 1176.0
planar_gbrapf32le_to_y_512_avx2 : 658.5planar_gbrp_to_uv_512_c : 2325.8
planar_gbrp_to_uv_512_sse2 : 1726.8
planar_gbrp_to_uv_512_sse4 : 771.8
planar_gbrp_to_uv_512_avx2 : 506.8
planar_gbrap_to_uv_512_c : 2281.8
planar_gbrap_to_uv_512_sse2 : 1726.3
planar_gbrap_to_uv_512_sse4 : 768.3
planar_gbrap_to_uv_512_avx2 : 496.3
planar_gbrp9be_to_uv_512_c : 2336.8
planar_gbrp9be_to_uv_512_sse2 : 1924.8
planar_gbrp9be_to_uv_512_sse4 : 852.3
planar_gbrp9be_to_uv_512_avx2 : 552.8
planar_gbrp9le_to_uv_512_c : 2270.3
planar_gbrp9le_to_uv_512_sse2 : 1512.3
planar_gbrp9le_to_uv_512_sse4 : 764.3
planar_gbrp9le_to_uv_512_avx2 : 491.3
planar_gbrp10be_to_uv_512_c : 2281.8
planar_gbrp10be_to_uv_512_sse2 : 1917.8
planar_gbrp10be_to_uv_512_sse4 : 855.3
planar_gbrp10be_to_uv_512_avx2 : 541.3
planar_gbrp10le_to_uv_512_c : 2269.8
planar_gbrp10le_to_uv_512_sse2 : 1515.3
planar_gbrp10le_to_uv_512_sse4 : 759.8
planar_gbrp10le_to_uv_512_avx2 : 487.8
planar_gbrap10be_to_uv_512_c : 2382.3
planar_gbrap10be_to_uv_512_sse2 : 1924.8
planar_gbrap10be_to_uv_512_sse4 : 855.3
planar_gbrap10be_to_uv_512_avx2 : 540.8
planar_gbrap10le_to_uv_512_c : 2382.3
planar_gbrap10le_to_uv_512_sse2 : 1512.3
planar_gbrap10le_to_uv_512_sse4 : 759.3
planar_gbrap10le_to_uv_512_avx2 : 484.8
planar_gbrp12be_to_uv_512_c : 2283.8
planar_gbrp12be_to_uv_512_sse2 : 1936.8
planar_gbrp12be_to_uv_512_sse4 : 858.3
planar_gbrp12be_to_uv_512_avx2 : 541.3
planar_gbrp12le_to_uv_512_c : 2278.8
planar_gbrp12le_to_uv_512_sse2 : 1507.3
planar_gbrp12le_to_uv_512_sse4 : 760.3
planar_gbrp12le_to_uv_512_avx2 : 485.8
planar_gbrap12be_to_uv_512_c : 2385.3
planar_gbrap12be_to_uv_512_sse2 : 1927.8
planar_gbrap12be_to_uv_512_sse4 : 855.3
planar_gbrap12be_to_uv_512_avx2 : 539.8
planar_gbrap12le_to_uv_512_c : 2377.3
planar_gbrap12le_to_uv_512_sse2 : 1516.3
planar_gbrap12le_to_uv_512_sse4 : 759.3
planar_gbrap12le_to_uv_512_avx2 : 484.8
planar_gbrp14be_to_uv_512_c : 2283.8
planar_gbrp14be_to_uv_512_sse2 : 1935.3
planar_gbrp14be_to_uv_512_sse4 : 852.3
planar_gbrp14be_to_uv_512_avx2 : 540.3
planar_gbrp14le_to_uv_512_c : 2276.8
planar_gbrp14le_to_uv_512_sse2 : 1514.8
planar_gbrp14le_to_uv_512_sse4 : 762.3
planar_gbrp14le_to_uv_512_avx2 : 484.8
planar_gbrp16be_to_uv_512_c : 2383.3
planar_gbrp16be_to_uv_512_sse2 : 1881.8
planar_gbrp16be_to_uv_512_sse4 : 852.3
planar_gbrp16be_to_uv_512_avx2 : 541.8
planar_gbrp16le_to_uv_512_c : 2378.3
planar_gbrp16le_to_uv_512_sse2 : 1476.8
planar_gbrp16le_to_uv_512_sse4 : 765.3
planar_gbrp16le_to_uv_512_avx2 : 485.8
planar_gbrap16be_to_uv_512_c : 2382.3
planar_gbrap16be_to_uv_512_sse2 : 1886.3
planar_gbrap16be_to_uv_512_sse4 : 853.8
planar_gbrap16be_to_uv_512_avx2 : 550.8
planar_gbrap16le_to_uv_512_c : 2381.8
planar_gbrap16le_to_uv_512_sse2 : 1488.3
planar_gbrap16le_to_uv_512_sse4 : 765.3
planar_gbrap16le_to_uv_512_avx2 : 491.8
planar_gbrpf32be_to_uv_512_c : 4863.0
planar_gbrpf32be_to_uv_512_sse2 : 3347.5
planar_gbrpf32be_to_uv_512_sse4 : 1800.0
planar_gbrpf32be_to_uv_512_avx2 : 1199.0
planar_gbrpf32le_to_uv_512_c : 4725.0
planar_gbrpf32le_to_uv_512_sse2 : 2753.0
planar_gbrpf32le_to_uv_512_sse4 : 1474.5
planar_gbrpf32le_to_uv_512_avx2 : 927.5
planar_gbrapf32be_to_uv_512_c : 4859.0
planar_gbrapf32be_to_uv_512_sse2 : 3269.0
planar_gbrapf32be_to_uv_512_sse4 : 1802.0
planar_gbrapf32be_to_uv_512_avx2 : 1201.5
planar_gbrapf32le_to_uv_512_c : 6338.0
planar_gbrapf32le_to_uv_512_sse2 : 2756.5
planar_gbrapf32le_to_uv_512_sse4 : 1476.0
planar_gbrapf32le_to_uv_512_avx2 : 908.5planar_gbrap_to_a_512_c : 383.3
planar_gbrap_to_a_512_sse2 : 66.8
planar_gbrap_to_a_512_avx2 : 43.8
planar_gbrap10be_to_a_512_c : 601.8
planar_gbrap10be_to_a_512_sse2 : 86.3
planar_gbrap10be_to_a_512_avx2 : 34.8
planar_gbrap10le_to_a_512_c : 602.3
planar_gbrap10le_to_a_512_sse2 : 48.8
planar_gbrap10le_to_a_512_avx2 : 31.3
planar_gbrap12be_to_a_512_c : 601.8
planar_gbrap12be_to_a_512_sse2 : 111.8
planar_gbrap12be_to_a_512_avx2 : 41.3
planar_gbrap12le_to_a_512_c : 385.8
planar_gbrap12le_to_a_512_sse2 : 75.3
planar_gbrap12le_to_a_512_avx2 : 39.8
planar_gbrap16be_to_a_512_c : 386.8
planar_gbrap16be_to_a_512_sse2 : 79.8
planar_gbrap16be_to_a_512_avx2 : 31.3
planar_gbrap16le_to_a_512_c : 600.3
planar_gbrap16le_to_a_512_sse2 : 40.3
planar_gbrap16le_to_a_512_avx2 : 30.3
planar_gbrapf32be_to_a_512_c : 1148.8
planar_gbrapf32be_to_a_512_sse2 : 611.3
planar_gbrapf32be_to_a_512_sse4 : 234.8
planar_gbrapf32be_to_a_512_avx2 : 183.3
planar_gbrapf32le_to_a_512_c : 851.3
planar_gbrapf32le_to_a_512_sse2 : 263.3
planar_gbrapf32le_to_a_512_sse4 : 199.3
planar_gbrapf32le_to_a_512_avx2 : 156.8Reviewed-by : Paul B Mahol <onemda@gmail.com>
Signed-off-by : James Almer <jamrial@gmail.com> -
Should H.264 bit rate be multiples of 8 ?
31 août 2016, par Dan SharpI’m working on a video platform receiving H.264 video and building an HLS stream (transmuxing the H.264 to Mpeg2 TS segments via calls to ffmpeg).
I wanted to set the bit rate to be about 2000 kbps, but I’m wondering : does it matter if it’s 2000 or 2048 ?
In other words, do things calculate better if the bit rate is multiples of 8, like 512 or 2024 or 2048 ?
I don’t know enough about how the bit rate is used, either on the sending side (camera) or on the processing side (ffmpeg).
From tests... I can’t see any noticeable difference between 2000 and 2048, but maybe one is slightly better than another for the transmuxing and segmenting ?
I welcome any thoughts/advice.