
Recherche avancée
Médias (1)
-
Rennes Emotion Map 2010-11
19 octobre 2011, par
Mis à jour : Juillet 2013
Langue : français
Type : Texte
Autres articles (107)
-
La gestion des forums
3 novembre 2011, parSi les forums sont activés sur le site, les administrateurs ont la possibilité de les gérer depuis l’interface d’administration ou depuis l’article même dans le bloc de modification de l’article qui se trouve dans la navigation de la page.
Accès à l’interface de modération des messages
Lorsqu’il est identifié sur le site, l’administrateur peut procéder de deux manières pour gérer les forums.
S’il souhaite modifier (modérer, déclarer comme SPAM un message) les forums d’un article particulier, il a à sa (...) -
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Le profil des utilisateurs
12 avril 2011, parChaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)
Sur d’autres sites (11643)
-
VP8 Documentation and Test Vector Contributions
14 octobre 2010, par noreply@blogger.com (John Luther)Janne Salonen of the WebM team in Oulu, Finland (formerly On2 Finland) has added a tabular description of the VP8 syntax to the VP8 Bitstream Guide. The new annex provides a concise reference of the elements in the bitstream and we hope will make implementing and testing VP8 decoders easier. The updated document and source can be downloaded from our documentation page.
We’re working on more improvements to the bitstream guide and invite other community members to help. As with the VP8 code, we gladly give attribution credit to documentation contributors and have added an AUTHORS file to the bitstream-guide Git repository.
New VP8 Test Vectors
The Oulu team has also produced some new VP8 test vectors. We analyzed a large set of WebM videos and produced two important corner use cases. The first produces the worst-case memory bandwidth (i.e., lots of global motion, all fractional motion vectors). The second produces the worst-case boolean decoder bin rate over dozens of consecutive frames. These vectors have been added to the VP8 test repository. Our team will consider other corner cases in the next batch of streams we add to the repository.
Aki Kuusela is Hantro Embedded Engineering Manager at Google.
-
Tour of Part of the VP8 Process
18 novembre 2010, par Multimedia Mike — VP8My toy VP8 encoder outputs a lot of textual data to illustrate exactly what it’s doing. For those who may not be exactly clear on how this or related algorithms operate, this may prove illuminating.
Let’s look at subblock 0 of macroblock 0 of a luma plane :
subblock 0 (original) 92 91 89 86 91 90 88 86 89 89 89 88 89 87 88 93
Since it’s in the top-left corner of the image to be encoded, the phantom samples above and to the left are implicitly 128 for the purpose of intra prediction (in the VP8 algorithm).
subblock 0 (original) 128 128 128 128 128 92 91 89 86 128 91 90 88 86 128 89 89 89 88 128 89 87 88 93
Using the 4×4 DC prediction mode means averaging the 4 top predictors and 4 left predictors. So, the predictor is 128. Subtract this from each element of the subblock :subblock 0, predictor removed -36 -37 -39 -42 -37 -38 -40 -42 -39 -39 -39 -40 -39 -41 -40 -35
Next, run the subblock through the forward transform :
subblock 0, transformed -312 7 1 0 1 12 -5 2 2 -3 3 -1 1 0 -2 1
Quantize (integer divide) each element ; the DC (first element) and AC (rest of the elements) quantizers are both 4 :
subblock 0, quantized -78 1 0 0 0 3 -1 0 0 0 0 0 0 0 0 0
The above block contains the coefficients that are actually transmitted (zigzagged and entropy-encoded) through the bitstream and decoded on the other end.
The decoding process looks something like this– after the same coefficients are decoded and rearranged, they are dequantized (multiplied) by the original quantizers :
subblock 0, dequantized -312 4 0 0 0 12 -4 0 0 0 0 0 0 0 0 0
Note that these coefficients are not exactly the same as the original, pre-quantized coefficients. This is a large part of where the “lossy” in “lossy video compression” comes from.
Next, the decoder generates a base predictor subblock. In this case, it’s all 128 (DC prediction for top-left subblock) :
subblock 0, predictor 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
Finally, the dequantized coefficients are shoved through the inverse transform and added to the base predictor block :
subblock 0, reconstructed 91 91 89 85 90 90 89 87 89 88 89 90 88 88 89 92
Again, not exactly the same as the original block, but an incredible facsimile thereof.
Note that this decoding-after-encoding demonstration is not merely pedagogical– the encoder has to decode the subblock because the encoding of successive subblocks may depend on this subblock. The encoder can’t rely on the original representation of the subblock because the decoder won’t have that– it will have the reconstructed block.
For example, here’s the next subblock :
subblock 1 (original) 84 84 87 90 85 85 86 93 86 83 83 89 91 85 84 87
Let’s assume DC prediction once more. The 4 top predictors are still all 128 since this subblock lies along the top row. However, the 4 left predictors are the right edge of the subblock reconstructed in the previous example :
subblock 1 (original) 128 128 128 128 85 84 84 87 90 87 85 85 86 93 90 86 83 83 89 92 91 85 84 87
The DC predictor is computed as
(128 + 128 + 128 + 128 + 85 + 87 + 90 + 92 + 4) / 8 = 108
(the extra +4 is for rounding considerations). (Note that in this case, using the original subblock’s right edge would also have resulted in 108, but that’s beside the point.)Continuing through the same process as in subblock 0 :
subblock 1, predictor removed -24 -24 -21 -18 -23 -23 -22 -15 -22 -25 -25 -19 -17 -23 -24 -21
subblock 1, transformed
-173 -9 14 -1
2 -11 -4 0
1 6 -2 3
-5 1 0 1subblock 1, quantized
-43 -2 3 0
0 -2 -1 0
0 1 0 0
-1 0 0 0subblock 1, dequantized
-172 -8 12 0
0 -8 -4 0
0 4 0 0
-4 0 0 0subblock 1, predictor
108 108 108 108
108 108 108 108
108 108 108 108
108 108 108 108subblock 1, reconstructed
84 84 87 89
86 85 87 91
86 83 84 89
90 85 84 88I hope this concrete example (straight from a working codec) clarifies this part of the VP8 process.
-
Encoder/Decoder PCM to AMR Android
2 mars 2013, par SyredI've been looking for a while now for any java library that allows me to encode and decode a PCM-AMR audio stream that is sent through a TCP socket connection. Without having to use Android's JNI.
Is there anything that can help me ?
In the worst case scenario. How can I do it using any C++ library with JNI ? (any reference of how to use ffmpeg with JNI will be appreciated)
Hope you can help me.