Recherche avancée

Médias (1)

Mot : - Tags -/copyleft

Autres articles (109)

  • Ecrire une actualité

    21 juin 2013, par

    Présentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
    Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
    Vous pouvez personnaliser le formulaire de création d’une actualité.
    Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)

  • Encoding and processing into web-friendly formats

    13 avril 2011, par

    MediaSPIP automatically converts uploaded files to internet-compatible formats.
    Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
    Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
    Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
    All uploaded files are stored online in their original format, so you can (...)

  • Ajouter notes et légendes aux images

    7 février 2011, par

    Pour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
    Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
    Modification lors de l’ajout d’un média
    Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)

Sur d’autres sites (9844)

  • net core and video transcoding on aws lambda

    14 septembre 2022, par user1765862

    I'm looking for a solution to :

    


      

    1. upload video to s3 bucket
    2. 


    3. after video upload an aws lambda function will be triggered
    4. 


    5. lambda function will use ffmpeg layer in order to transcode video (mainly cropping with other functionalities)
    6. 


    7. save result (transcoded video into s3 bucket)
    8. 


    


    My language of choice inside lambda is c# and net core runtime.

    


    I have found various resources for video manipulation with aws ffmpeg layer using lambda function but no examples in net core lambda.

    


    My question is :

    


    


    Can I use existing FFmpeg/FFprobe Lambda Layer for Amazon Linux such
as this one with lambda function written in c# and .net core ?

    


    


    Another question :

    


    


    Would you suggest Amazon Elastic Transcoder as a better choice with
lambda function .net core integration ?

    


    


  • I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, **it show but in fact, I can't hear any sound

    19 avril 2022, par Siti Mayna

    So I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, it show but in fact, I can't hear any sound. Another fact is, that I tried to use the sample audio from https://developer.amazon.com/en-US/docs/alexa/custom-skills/ask-soundlibrary.html and it is worked, but why it won't work when it comes from my own S3 Bucket ?

    


    Notes :

    


    I've tried to test the skill using my mobile phone also.

    


    I've tried to encode the audio using FFmpeg.

    


    I've tried to use Jovo to convert the audio. https://v3.jovo.tech/audio-converter

    


    I don't know how to fix this error.

    


    There is no error message on cloud watch.

    


    Assumptions :
There is some problem related to the audio resources or there is more set to play audio from S3 Bucket since the sample audio is working.

    


    Steps to reproduce :

    


    


    Build the interaction model

    


    


    


    Encode the audio to make it Alexa skill friendly (fulfill the requirements, like sample rate, etc), I used and tried all of these :

    


    


    A :

    


    ffmpeg -i  -ac 2 -codec:a libmp3lame -b:a 48k -ar 16000 -write_xing 0 


    


    B :

    


    ffmpeg -i  -ac 2 -codec:a libmp3lame -b:a 48k -ar 24000 -write_xing 0 


    


    C :

    


    ffmpeg -y -i input.mp3 -ar 16000 -ab 48k -codec:a libmp3lame -ac 1 output.mp3


    


    


    Upload the audio resources on S3Bucket
Audio sample on s3 storage but none of them are produce any sounds

    


    


    


    Use the link and insert it to APLA.json

    


    


    
    {
      "type": "APLA",
      "version": "0.91",
      "description": "Simple document that generates speech",
      "mainTemplate": {
        "parameters": [
          "payload"
        ],
        "type": "Sequencer",
        "items": [
          {
            "type": "Audio",
            "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
          }
        ]
      }
    }



    


    notes : I change the link sources based on audio that I tried.

    


    


    the intent on lambda_function.py :

    


    


    def _load_apl_document(file_path):
    # type: (str) -> Dict[str, Any]
    """Load the apl json document at the path into a dict object."""
    with open(file_path) as f:
        return json.load(f)

class LaunchRequestHandler(AbstractRequestHandler):
    """Handler for Skill Launch."""
    def can_handle(self, handler_input):
        # type: (HandlerInput) -> bool

        return ask_utils.is_request_type("LaunchRequest")(handler_input)

    def handle(self, handler_input):
        # type: (HandlerInput) -> Response
        logger.info("In LaunchRequestHandler")

        # type: (HandlerInput) -> Response
        speak_output = "Hello World!"
        # .ask("add a reprompt if you want to keep the session open for the user to respond")

        return (
            handler_input.response_builder
                #.speak(speak_output)
                .add_directive(
                        RenderDocumentDirective(
                            token="pagerToken",
                            document=_load_apl_document("APLA.json"),
                            datasources={}
                        )
                    )
                .response
        )


    


    


    Deploy

    


    


    


    Test it

    


    


    


    The result of the test on my end :

The response for testing

    


    


    the JSON response :

    


    {
    "body": {
        "version": "1.0",
        "response": {
            "directives": [
                {
                    "type": "Alexa.Presentation.APLA.RenderDocument",
                    "token": "pagerToken",
                    "document": {
                        "type": "APLA",
                        "version": "0.91",
                        "description": "Simple document that generates speech",
                        "mainTemplate": {
                            "parameters": [
                                "payload"
                            ],
                            "type": "Sequencer",
                            "items": [
                                {
                                    "type": "Audio",
                                    "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
                                }
                            ]
                        }
                    },
                    "datasources": {}
                }
            ],
            "type": "_DEFAULT_RESPONSE"
        },
        "sessionAttributes": {},
        "userAgent": "ask-python/1.16.1 Python/3.7.12"
    }
}


    


    


    On my cloud Watch :
Cloud Watch

    


    


  • swscale : aarch64 : Optimize the final summation in the hscale routine

    20 avril 2022, par Martin Storsjö
    swscale : aarch64 : Optimize the final summation in the hscale routine
    

    Before : Cortex A53 A72 A73 Graviton 2 Graviton 3
    hscale_8_to_15_width8_neon : 8273.0 4602.5 4289.5 2429.7 1629.1
    hscale_8_to_15_width16_neon : 12405.7 6803.0 6359.0 3549.0 2378.4
    hscale_8_to_15_width32_neon : 21258.7 11491.7 11469.2 5797.2 3919.6
    hscale_8_to_15_width40_neon : 25652.0 14173.7 12488.2 6893.5 4810.4

    After :
    hscale_8_to_15_width8_neon : 7633.0 3981.5 3350.2 1980.7 1261.1
    hscale_8_to_15_width16_neon : 11666.7 5951.0 5512.0 3080.7 2131.4
    hscale_8_to_15_width32_neon : 20900.7 10733.2 9481.7 5275.2 3862.1
    hscale_8_to_15_width40_neon : 24826.0 13536.2 11502.0 6397.2 4731.9

    Thus, this gives overall a 8-29% speedup for the smaller filter
    sizes, around 1-8% for the larger filter sizes.

    Inspired by a patch by Jonathan Swinney <jswinney@amazon.com>.

    Signed-off-by : Martin Storsjö <martin@martin.st>

    • [DH] libswscale/aarch64/hscale.S