Recherche avancée

Médias (91)

Autres articles (97)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • Multilang : améliorer l’interface pour les blocs multilingues

    18 février 2011, par

    Multilang est un plugin supplémentaire qui n’est pas activé par défaut lors de l’initialisation de MediaSPIP.
    Après son activation, une préconfiguration est mise en place automatiquement par MediaSPIP init permettant à la nouvelle fonctionnalité d’être automatiquement opérationnelle. Il n’est donc pas obligatoire de passer par une étape de configuration pour cela.

  • Qualité du média après traitement

    21 juin 2013, par

    Le bon réglage du logiciel qui traite les média est important pour un équilibre entre les partis ( bande passante de l’hébergeur, qualité du média pour le rédacteur et le visiteur, accessibilité pour le visiteur ). Comment régler la qualité de son média ?
    Plus la qualité du média est importante, plus la bande passante sera utilisée. Le visiteur avec une connexion internet à petit débit devra attendre plus longtemps. Inversement plus, la qualité du média est pauvre et donc le média devient dégradé voire (...)

Sur d’autres sites (13199)

  • audio convert to mp3,pcm and vox using ffmpeg

    8 juillet 2014, par user3789242

    Please can someone help me with the code for ffmpeg.
    I have to use ffmpeg to convert a recorder voice (using HTML5) into mp3,pcm or vox depending on the user’s selection.
    I don’t know how to write the code for ffmpeg if some one can help me with the code or libraries.
    Thank you in advance.

    Here is my code for recording the voice with a visualizer :

    // variables
    var leftchannel = [];
    var rightchannel = [];
    var recorder = null;
    var recording = false;
    var recordingLength = 0;
    var volume = null;
    var audioInput = null;
    var sampleRate = 44100;
    var audioContext = null;
    var context = null;
    var outputString;



    if (!navigator.getUserMedia)
      navigator.getUserMedia = navigator.getUserMedia ||
                            navigator.webkitGetUserMedia ||
                            navigator.mozGetUserMedia ||
                            navigator.msGetUserMedia;

    if (navigator.getUserMedia){
    navigator.getUserMedia({audio:true}, success, function(e) {
    alert('Error capturing audio.');
    });
    } else alert('getUserMedia not supported in this browser.');



    function getVal(value)
     {

    // if R is pressed, we start recording
    if ( value == "record"){
       recording = true;
       // reset the buffers for the new recording
       leftchannel.length = rightchannel.length = 0;
       recordingLength = 0;
       document.getElementById('output').innerHTML="Recording now...";

    // if S is pressed, we stop the recording and package the WAV file
    } else if ( value == "stop" ){

       // we stop recording
       recording = false;
       document.getElementById('output').innerHTML="Building wav file...";

       // we flat the left and right channels down
       var leftBuffer = mergeBuffers ( leftchannel, recordingLength );
       var rightBuffer = mergeBuffers ( rightchannel, recordingLength );
       // we interleave both channels together
       var interleaved = interleave ( leftBuffer, rightBuffer );



       var buffer = new ArrayBuffer(44 + interleaved.length * 2);
       var view = new DataView(buffer);

       // RIFF chunk descriptor
       writeUTFBytes(view, 0, 'RIFF');
       view.setUint32(4, 44 + interleaved.length * 2, true);
       writeUTFBytes(view, 8, 'WAVE');
       // FMT sub-chunk
       writeUTFBytes(view, 12, 'fmt ');
       view.setUint32(16, 16, true);
       view.setUint16(20, 1, true);
       // stereo (2 channels)
       view.setUint16(22, 2, true);
       view.setUint32(24, sampleRate, true);
       view.setUint32(28, sampleRate * 4, true);
       view.setUint16(32, 4, true);
       view.setUint16(34, 16, true);
       // data sub-chunk
       writeUTFBytes(view, 36, 'data');
       view.setUint32(40, interleaved.length * 2, true);


       var lng = interleaved.length;
       var index = 44;
       var volume = 1;
       for (var i = 0; i < lng; i++){
           view.setInt16(index, interleaved[i] * (0x7FFF * volume), true);
           index += 2;
       }

       var blob = new Blob ( [ view ], { type : 'audio/wav' } );

       // let's save it locally

       document.getElementById('output').innerHTML='Handing off the file now...';
       var url = (window.URL || window.webkitURL).createObjectURL(blob);

       var li = document.createElement('li');
       var au = document.createElement('audio');
       var hf = document.createElement('a');

       au.controls = true;
       au.src = url;
       hf.href = url;
       hf.download = 'audio_recording_' + new Date().getTime() + '.wav';
       hf.innerHTML = hf.download;
       li.appendChild(au);
       li.appendChild(hf);
       recordingList.appendChild(li);

    }
    }


    function success(e){

    audioContext = window.AudioContext || window.webkitAudioContext;
    context = new audioContext();


    volume = context.createGain();

    // creates an audio node from the microphone incoming stream(source)
    source = context.createMediaStreamSource(e);

    // connect the stream(source) to the gain node
    source.connect(volume);

    var bufferSize = 2048;

    recorder = context.createScriptProcessor(bufferSize, 2, 2);

    //node for the visualizer
    analyser = context.createAnalyser();
    analyser.smoothingTimeConstant = 0.3;
    analyser.fftSize = 512;

    splitter = context.createChannelSplitter();
    //when recording happens
    recorder.onaudioprocess = function(e){

       if (!recording) return;
       var left = e.inputBuffer.getChannelData (0);
       var right = e.inputBuffer.getChannelData (1);

       leftchannel.push (new Float32Array (left));
       rightchannel.push (new Float32Array (right));
       recordingLength += bufferSize;

       // get the average for the first channel
       var array =  new Uint8Array(analyser.frequencyBinCount);
       analyser.getByteFrequencyData(array);

       var c=document.getElementById("myCanvas");
       var ctx = c.getContext("2d");
       // clear the current state
       ctx.clearRect(0, 0, 1000, 325);
       var gradient = ctx.createLinearGradient(0,0,0,300);
       gradient.addColorStop(1,'#000000');
       gradient.addColorStop(0.75,'#ff0000');
       gradient.addColorStop(0.25,'#ffff00');
       gradient.addColorStop(0,'#ffffff');
       // set the fill style
       ctx.fillStyle=gradient;
       drawSpectrum(array);
       function drawSpectrum(array) {
           for ( var i = 0; i < (array.length); i++ ){
                   var value = array[i];
                   ctx.fillRect(i*5,325-value,3,325);
               }

       }
    }

    function getAverageVolume(array) {
       var values = 0;
       var average;

       var length = array.length;

       // get all the frequency amplitudes
       for (var i = 0; i < length; i++) {
           values += array[i];
       }

       average = values / length;
       return average;
    }

       // we connect the recorder(node to destination(speakers))
       volume.connect(splitter);
       splitter.connect(analyser, 0, 0);

       analyser.connect(recorder);
       recorder.connect(context.destination);

    }




    function mergeBuffers(channelBuffer, recordingLength){
    var result = new Float32Array(recordingLength);
    var offset = 0;
    var lng = channelBuffer.length;
    for (var i = 0; i < lng; i++){
    var buffer = channelBuffer[i];
    result.set(buffer, offset);
    offset += buffer.length;
    }
       return result;
      }

    function interleave(leftChannel, rightChannel){  
    var length = leftChannel.length + rightChannel.length;
    var result = new Float32Array(length);

    var inputIndex = 0;

    for (var index = 0; index < length; ){
    result[index++] = leftChannel[inputIndex];
    result[index++] = rightChannel[inputIndex];
    inputIndex++;
    }
    return result;
    }


    function writeUTFBytes(view, offset, string){
    var lng = string.length;
    for (var i = 0; i < lng; i++){

    view.setUint8(offset + i, string.charCodeAt(i));
    }
    }
  • ffmpeg concatenation with -filter_complex

    16 octobre 2018, par Igniter

    I’ve seen several similar questions but none of them actually helped in my case.
    Getting this error while trying to join 1 audio and 4 video files of different nature and resolutions.

    ffmpeg -i 0.mp3 -i 1.mp4 -i 2.mkv -i 3.mkv -i 4.webm \
       -filter_complex [0:a:0][1:v:0][2:v:0][3:v:0][4:v:0]concat=n=5:v=1:a=1[outv][outa] \
       -map "[outv]" -map "[outa]" output.mp4

    All this gives the following error :

    Stream specifier ':a:0' in filtergraph description [0:a:0][1:v:0][2:v:0][3:v:0][4:v:0]concat=n=5:v=1:a=1[outv][outa] matches no streams.

    Straight concatenation -i "concat:0.mp3|1.mp4..." also doesn’t work as expected due to different resolutions and video formats. All methods syntax was taken from official documentation but there should be something that I’ve missed here.

    Full output log :

    ffmpeg version 3.4.4-0ubuntu0.18.04.1 Copyright (c) 2000-2018 the FFmpeg developers
     built with gcc 7 (Ubuntu 7.3.0-16ubuntu3)
     configuration: --prefix=/usr --extra-version=0ubuntu0.18.04.1 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --enable-gpl --disable-stripping --enable-avresample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librubberband --enable-librsvg --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-omx --enable-openal --enable-opengl --enable-sdl2 --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libopencv --enable-libx264 --enable-shared
     libavutil      55. 78.100 / 55. 78.100
     libavcodec     57.107.100 / 57.107.100
     libavformat    57. 83.100 / 57. 83.100
     libavdevice    57. 10.100 / 57. 10.100
     libavfilter     6.107.100 /  6.107.100
     libavresample   3.  7.  0 /  3.  7.  0
     libswscale      4.  8.100 /  4.  8.100
     libswresample   2.  9.100 /  2.  9.100
     libpostproc    54.  7.100 / 54.  7.100
    Input #0, mp3, from 'mp3/10.mp3':
     Metadata:
       album_artist    : artist
       title           : title
       artist          : 10
       album           : 12
       track           : 1
       VideoKind       : 2
       date            : 2009
     Duration: 00:06:00.44, start: 0.025056, bitrate: 64 kb/s
       Stream #0:0: Audio: mp3, 44100 Hz, stereo, s16p, 64 kb/s
       Metadata:
         encoder         : LAME3.98r
       Stream #0:1: Video: mjpeg, yuvj420p(pc, bt470bg/unknown/unknown), 200x200 [SAR 72:72 DAR 1:1], 90k tbr, 90k tbn, 90k tbc
       Metadata:
         comment         : Cover (front)
    Input #1, matroska,webm, from '1.mp4':
     Metadata:
       MINOR_VERSION   : 0
       COMPATIBLE_BRANDS: iso6avc1mp41
       MAJOR_BRAND     : dash
       ENCODER         : Lavf57.83.100
     Duration: 00:01:53.05, start: 0.007000, bitrate: 2292 kb/s
       Stream #1:0: Video: h264 (High), yuv420p(tv, bt709, progressive), 1920x1080 [SAR 1:1 DAR 16:9], 24 fps, 24 tbr, 1k tbn, 48 tbc (default)
       Metadata:
         HANDLER_NAME    : VideoHandler
         DURATION        : 00:01:53.048000000
    Input #2, matroska,webm, from '2.mkv':
     Metadata:
       MINOR_VERSION   : 0
       COMPATIBLE_BRANDS: iso6avc1mp41
       MAJOR_BRAND     : dash
       ENCODER         : Lavf57.83.100
     Duration: 00:02:08.09, start: 0.007000, bitrate: 1607 kb/s
       Stream #2:0: Video: h264 (High), yuv420p(tv, bt709, progressive), 1920x1080 [SAR 1:1 DAR 16:9], 24 fps, 24 tbr, 1k tbn, 48 tbc (default)
       Metadata:
         HANDLER_NAME    : VideoHandler
         DURATION        : 00:02:08.090000000
    Input #3, matroska,webm, from '3.mkv':
     Metadata:
       MINOR_VERSION   : 0
       COMPATIBLE_BRANDS: iso6avc1mp41
       MAJOR_BRAND     : dash
       ENCODER         : Lavf57.83.100
     Duration: 00:01:37.05, start: 0.007000, bitrate: 3525 kb/s
       Stream #3:0: Video: h264 (High), yuv420p(tv, bt709, progressive), 1920x1080 [SAR 1:1 DAR 16:9], 24 fps, 24 tbr, 1k tbn, 48 tbc (default)
       Metadata:
         HANDLER_NAME    : VideoHandler
         DURATION        : 00:01:37.048000000
    Input #4, matroska,webm, from '4.webm':
     Metadata:
       MINOR_VERSION   : 0
       COMPATIBLE_BRANDS: iso6avc1mp41
       MAJOR_BRAND     : dash
       ENCODER         : Lavf57.83.100
     Duration: 00:01:45.13, start: 0.007000, bitrate: 3685 kb/s
       Stream #4:0: Video: h264 (High), yuv420p(tv, bt709, progressive), 1920x1080 [SAR 1:1 DAR 16:9], 24 fps, 24 tbr, 1k tbn, 48 tbc (default)
       Metadata:
         HANDLER_NAME    : VideoHandler
         DURATION        : 00:01:45.131000000
    Stream specifier ':a:0' in filtergraph description [0:a:0][1:v:0][2:v:0][3:v:0][4:v:0]concat=n=5:v=1:a=1[outv][outa] matches no streams.
  • Problems with Python's azure.cognitiveservices.speech when installing together with FFmpeg in a Linux web app

    15 mai 2024, par Kakobo kakobo

    I need some help.
I'm building an web app that takes any audio format, converts into a .wav file and then passes it to 'azure.cognitiveservices.speech' for transcription.I'm building the web app via a container Dockerfile as I need to install ffmpeg to be able to convert non ".wav" audio files to ".wav" (as azure speech services only process wav files). For some odd reason, the 'speechsdk' class of 'azure.cognitiveservices.speech' fails to work when I install ffmpeg in the web app. The class works perfectly fine when I install it without ffpmeg or when i build and run the container in my machine.

    


    I have placed debug print statements in the code. I can see the class initiating, for some reason it does not buffer in the same when when running it locally in my machine. The routine simply stops without any reason.

    


    Has anybody experienced a similar issue with azure.cognitiveservices.speech conflicting with ffmpeg ?

    


    Here's my Dockerfile :

    


    # Use an official Python runtime as a parent imageFROM python:3.11-slim

#Version RunRUN echo "Version Run 1..."

Install ffmpeg

RUN apt-get update && apt-get install -y ffmpeg && # Ensure ffmpeg is executablechmod a+rx /usr/bin/ffmpeg && # Clean up the apt cache by removing /var/lib/apt/lists saves spaceapt-get clean && rm -rf /var/lib/apt/lists/*

//Set the working directory in the container

WORKDIR /app

//Copy the current directory contents into the container at /app

COPY . /app

//Install any needed packages specified in requirements.txt

RUN pip install --no-cache-dir -r requirements.txt

//Make port 80 available to the world outside this container

EXPOSE 8000

//Define environment variable

ENV NAME World

//Run main.py when the container launches

CMD ["streamlit", "run", "main.py", "--server.port", "8000", "--server.address", "0.0.0.0"]`and here's my python code:


    


    def transcribe_audio_continuous_old(temp_dir, audio_file, language):
    speech_key = azure_speech_key
    service_region = azure_speech_region

    time.sleep(5)
    print(f"DEBUG TIME BEFORE speechconfig")

    ran = generate_random_string(length=5)
    temp_file = f"transcript_key_{ran}.txt"
    output_text_file = os.path.join(temp_dir, temp_file)
    speech_recognition_language = set_language_to_speech_code(language)
    
    speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
    speech_config.speech_recognition_language = speech_recognition_language
    audio_input = speechsdk.AudioConfig(filename=os.path.join(temp_dir, audio_file))
        
    speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_input, language=speech_recognition_language)
    done = False
    transcript_contents = ""

    time.sleep(5)
    print(f"DEBUG TIME AFTER speechconfig")
    print(f"DEBUG FIle about to be passed {audio_file}")

    try:
        with open(output_text_file, "w", encoding=encoding) as file:
            def recognized_callback(evt):
                print("Start continuous recognition callback.")
                print(f"Recognized: {evt.result.text}")
                file.write(evt.result.text + "\n")
                nonlocal transcript_contents
                transcript_contents += evt.result.text + "\n"

            def stop_cb(evt):
                print("Stopping continuous recognition callback.")
                print(f"Event type: {evt}")
                speech_recognizer.stop_continuous_recognition()
                nonlocal done
                done = True
            
            def canceled_cb(evt):
                print(f"Recognition canceled: {evt.reason}")
                if evt.reason == speechsdk.CancellationReason.Error:
                    print(f"Cancellation error: {evt.error_details}")
                nonlocal done
                done = True

            speech_recognizer.recognized.connect(recognized_callback)
            speech_recognizer.session_stopped.connect(stop_cb)
            speech_recognizer.canceled.connect(canceled_cb)

            speech_recognizer.start_continuous_recognition()
            while not done:
                time.sleep(1)
                print("DEBUG LOOPING TRANSCRIPT")

    except Exception as e:
        print(f"An error occurred: {e}")

    print("DEBUG DONE TRANSCRIPT")

    return temp_file, transcript_contents


    


    The transcript this callback works fine locally, or when installed without ffmpeg in the linux web app. Not sure why it conflicts with ffmpeg when installed via container dockerfile. The code section that fails can me found on note #NOTE DEBUG"