Recherche avancée

Médias (1)

Mot : - Tags -/copyleft

Autres articles (48)

  • Mise à jour de la version 0.1 vers 0.2

    24 juin 2013, par

    Explications des différents changements notables lors du passage de la version 0.1 de MediaSPIP à la version 0.3. Quelles sont les nouveautés
    Au niveau des dépendances logicielles Utilisation des dernières versions de FFMpeg (>= v1.2.1) ; Installation des dépendances pour Smush ; Installation de MediaInfo et FFprobe pour la récupération des métadonnées ; On n’utilise plus ffmpeg2theora ; On n’installe plus flvtool2 au profit de flvtool++ ; On n’installe plus ffmpeg-php qui n’est plus maintenu au (...)

  • Personnaliser en ajoutant son logo, sa bannière ou son image de fond

    5 septembre 2013, par

    Certains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (10785)

  • Revision 36871 : amélioreations de pas mal de choses

    2 avril 2010, par kent1@… — Log

    amélioreations de pas mal de choses

  • Resurrecting SCD

    6 août 2010, par Multimedia Mike — Reverse Engineering

    When I became interested in reverse engineering all the way back in 2000, the first Win32 disassembler I stumbled across was simply called "Win32 Program Disassembler" authored by one Sang Cho. I took to calling it ’scd’ for Sang Cho’s Disassembler. The original program versions and source code are still available for download. I remember being able to compile v0.23 of the source code with gcc under Unix ; 0.25 is no go due to extensive reliance on the Win32 development environment.

    I recently wanted to use scd again but had some trouble compiling. As was the case the first time I tried compiling the source code a decade ago, it’s necessary to transform line endings from DOS -> Unix using ’dos2unix’ (I see that this has been renamed to/replaced by ’fromdos’ on Ubuntu).

    Beyond this, it seems that there are some C constructs that used to be valid but are now rejected by gcc. The first looks like this :

    C :
    1. return (int) c = *(PBYTE)((int)lpFile + vCodeOffset) ;

    Ahem, "error : lvalue required as left operand of assignment". Removing the "(int)" before the ’c’ makes the problem go away. It’s a strange way to write a return statement in general. However, ’c’ is a global variable that is apparently part of some YACC/BISON-type output.

    The second issue is when a case-switch block has a default label but with no code inside. Current gcc doesn’t like that. It’s necessary to at least provide a break statement after the default label.

    Finally, the program turns out to not be 64-bit safe. It is necessary to compile it in 32-bit mode (compile and link with the ’-m32’ flag or build on a 32-bit system). The static 32-bit binary should run fine under a 64-bit kernel.

    Alternatively : What are some other Win32 disassemblers that work under Linux ?

  • An introduction to reverse engineering

    22 janvier 2011

    (This blog is still in hibernation, but I needed somewhere to post this)

    Reverse engineering is one of those wonderful topics, covering everything from simple "guess how this program works" problem solving, to poking at silicon with scanning electron microscopes. I’m always hugely fascinated by articles that walk through the steps involved in these types of activities, so I thought I’d contribute one back to the world.

    In this case, I’m going to be looking at the export bundle format created by the Tandberg Content Server, a device for recording video conferences. The bundle is intended for moving recordings between Tandberg devices, but it’s also the easiest way to get all of the related assets for a recorded conference. Unfortunately, there’s no parser available to take the bundle files (.tcb) and output the component pieces. Well, that just won’t do.

    For this type of reverse engineering, I basically want to learn enough about the TCB format to be able to parse out the individual files within it. The only tools I’ll need in this process are a hex editor, a notepad, and a way to convert between hex and decimal (the OS X calculator will do fine if you’re not the type to do it in your head).

    Step 1 : Basic Research
    After Googling around to see if this was a solved issue, I decided to dive into the format. I brought a sample bundle into my trusty hex editor (in this case Hex Fiend).

    1-1.jpg

    A few things are immediately obvious. First, we see the first four bytes are the letters TCSB. Another quick visit to Google confirms this header type isn’t found elsewhere, and there’s essentially no discussion of it. Going a few bytes further, we see "contents.xml." And a few bytes after that, we see what looks like plaintext XML. This is a pretty good clue that the TCB file consists of a . Let’s scan a bit further and see if we can confirm that.
    1-2.jpg
    In this segment, we see the end of the XML, and something that could be another filename - "dbtransfer" - followed by what looks like gibberish. That doesn’t help too much. Let’s keep looking.
    1-3.jpg
    Great - a .jpg ! Looking a bit further, we see the letters "JFIF," which is recognizable as part of a JPEG header. If you weren’t already familiar with that, a quick google for "jpg hex header" would clear up any confusion. So, we’ve got the basics of the file format down, but we’ll need a little bit more information if we’re going to write a parser.

    Step 2 : Finding the pattern
    We can make an educated guess that a file like this has to provide a few hints to a decoder. We would either expect a table of contents, describing where in the bundle each individual file was located, some sort of stop bit marking the boundary between files, byte offsets describing the locations of files, or a listing of file lengths.

    There isn’t any sign of a table of contents. Let’s start looking for a stop bit, as that would make writing our parser really easy. Want I’m going to do is pull out all of the data between two prospective files, and I want two sets to compare.
    I’ve placed asterisks to flag the bytes corresponding to the filenames, since those are known.

    1E D1 70 4C 25 06 36 4D 42 E9 65 6A 9F 5D 88 38 0A 00 *64 62 74 72 61 6E 73 66 65 72* 42 06 ED 48 0B 50 0A C4 14 D6 63 42 F2 BF E3 9D 20 29 00 00 00 00 00 00 DE E5 FD

    01 0C 00 *63 6F 6E 74 65 6E 74 73 2E 78 6D 6C* 9E 0E FE D3 C9 3A 3A 85 F4 E4 22 FE D0 21 DC D7 53 03 00 00 00 00 00 00

    The first line corresponds to the "dbtransfer" entry, the second to the "contents.xml" entry. Let’s trim the first entry to match the second.

    38 0A 00 *64 62 74 72 61 6E 73 66 65 72* 42 06 ED 48 0B 50 0A C4 14 D6 63 42 F2 BF E3 9D 20 29 00 00 00 00 00 00

    01 0C 00 *63 6F 6E 74 65 6E 74 73 2E 78 6D 6C* 9E 0E FE D3 C9 3A 3A 85 F4 E4 22 FE D0 21 DC D7 53 03 00 00 00 00 00 00

    It looks like we’ve got three bytes before the filename, followed by 18 bytes, followed by six bytes of zero. Unfortunately, there’s no obvious pattern of bits which would correspond to a "break" between segments. However, looking at those first three bytes, we see a 0x0A, and a 0x0C, two small values in the same place. 10 and 12. Interesting - the 12 entry corresponds with "contents.xml" and the 10 entry corresponds with "dbtransfer". Could that byte describe the length of the filename ? Let’s look at our much longer JPG entry to be sure.

    70 4A 00 *77 77 77 5C 73 6C 69 64 65 73 5C 64 37 30 64 35 34 63 66 2D 32 39 35 62 2D 34 31 34 63 2D 61 38 64 66 2D 32 66 37 32 64 66 33 30 31 31 35 65 5C 74 68 75 6D 62 6E 61 69 6C 73 5C 74 68 75 6D 62 6E 61 69 6C 30 30 2E 6A 70 67*

    0x4A - 74, corresponding to a 74 character filename. Looks like we’re in business.

    At this point, it’s worth an aside to talk about endianness. I happen to know that the Tandberg Content Server runs Windows on Intel, so I went into this with the assumption that the format was little-endian. However, if you’re not sure, it’s always worth looking at words backwards and forwards, just in case.

    So we know how to find our filename. Now how do we find our file data ? Let’s go back to our JPEG. We know that JPEGs start with 0xFFD8FFE0, and a quick trip to Google also tells us that they end with 0xFFD9. We can use that to pull a sample jpeg out of our TCB, save it to disk, and confirm that we’re on the right track.
    2-2.jpg

    This is one of those great steps in reverse engineering - concrete proof that you’re on the right track. Everything seems to go quicker from this point on.

    So, we know we’ve got a JPEG file in a continuous 2177 byte segment. We know that the format used byte lengths to describe filenames - maybe it also uses byte lengths to describe file lengths. Let’s look for 2177, or 0x8108, near our JPEG.

    2-3.jpg

    Well, that’s a good sign. But, it could be coincidental, so at this point we’d want to check a few other files to be sure. In fact, looking further in some file, we find some larger .mp4 files which don’t quite match our guess. It turns out that file length is a 32bit value, not a 16bit value - with our two jpegs, the larger bytes just happened to be zeros.

    Step 3 : Writing a parser

    "Bbbbbut...", I hear you say ! "You have all these chunks of data you don’t understand !"

    True enough, but all I care about is getting the files out, with the proper names. I don’t care about creation dates, file permissions, or any of the other crud that this file format likely contains.

    3-1.jpg

    Let’s look at the first two files in this bundle. A little bit of byte counting shows us the pattern that we can follow. We’ll treat the first file as a special case. After that, we seek 16 bytes from the end of file data to find the filename length (2 bytes), then we’re at the filename, then we seek 16 bytes to find the file length (4 bytes) and seek another 4 bytes to find the start of the file data. Rinse, repeat.

    I wrote a quick parser in PHP, since the eventual use for this information is part of a larger PHP-based application, but any language with basic raw file handling would work just as well.

    tcsParser.txt
    This was about the simplest possible type of reverse engineering - we had known data in an unknown format, without any compression or encryption. It only gets harder from here...