Recherche avancée

Médias (3)

Mot : - Tags -/spip

Autres articles (45)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Déploiements possibles

    31 janvier 2010, par

    Deux types de déploiements sont envisageable dépendant de deux aspects : La méthode d’installation envisagée (en standalone ou en ferme) ; Le nombre d’encodages journaliers et la fréquentation envisagés ;
    L’encodage de vidéos est un processus lourd consommant énormément de ressources système (CPU et RAM), il est nécessaire de prendre tout cela en considération. Ce système n’est donc possible que sur un ou plusieurs serveurs dédiés.
    Version mono serveur
    La version mono serveur consiste à n’utiliser qu’une (...)

  • Contribute to a better visual interface

    13 avril 2011

    MediaSPIP is based on a system of themes and templates. Templates define the placement of information on the page, and can be adapted to a wide range of uses. Themes define the overall graphic appearance of the site.
    Anyone can submit a new graphic theme or template and make it available to the MediaSPIP community.

Sur d’autres sites (13162)

  • Revision 2584a5e5e5 : Add cheap show-buffer operation Adds the ability to have the decoder show one o

    3 octobre 2012, par John Koleszar

    Changed Paths :
     Modify /vp9/decoder/vp9_decodframe.c


     Modify /vp9/encoder/vp9_bitstream.c



    Add cheap show-buffer operation

    Adds the ability to have the decoder show one of the existing reference
    frames directly, without having to code it indirectly as a series of
    skip blocks.

    Change-Id : Ib6c26c5f6a8709863cf304ab890db8559687d25e

  • even though my code is running without an error, it does not generate plot or video. I have xming runing

    23 octobre 2017, par Amin Abbasi

    This is my first code and I am really new to coding. I am trying to create a video or just plot my code.Eeven though my code is running without an error, I can’t get the video or the plot to generate. I have xming running and I have plotted a sample to make sure it not a computer Issue. I have also tried the following on GitHub but no success :
    https://jakevdp.github.io/blog/2013/05/19/a-javascript-viewer-for-matplotlib-animations/

    # -*- coding: utf-8 -*-
    import numpy as np
    def solver(I, V, f, c, L, dt, cc, T, user_action=None):
       """Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
       Nt = int(round(T/dt))
       t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
       dx = dt*c/float(cc)
       Nx = int(round(L/dx))
       x = np.linspace(0, L, Nx+1) # Mesh points in space
       C2 = cc**2 # Help variable in the scheme
       # Make sure dx and dt are compatible with x and t
       dx = x[1] - x[0]
       dt = t[1] - t[0]
       if f is None or f == 0 :
           f = lambda x, t: 0
       if V is None or V == 0:
           V = lambda x: 0
       u       = np.zeros(Nx+1) # Solution array at new time level
       u_n     = np.zeros(Nx+1) # Solution at 1 time level back
       u_nm1   = np.zeros(Nx+1) # Solution at 2 time levels back
       import time; t0 = time.clock() # Measure CPU time
       # Load initial condition into u_n
       for i in range(0,Nx+1):
           u_n[i] = I(x[i])
       if user_action is not None:
           user_action(u_n, x, t, 0)
       # Special formula for first time step
       n = 0
       for i in range(1, Nx):
           u[i] = u_n[i] + dt*V(x[i]) + \
               0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
               0.5*dt**2*f(x[i], t[n])
       u[0] = 0; u[Nx] = 0
       if user_action is not None:
           user_action(u, x, t, 1)
       # Switch variables before next step
       u_nm1[:] = u_n; u_n[:] = u
       for n in range(1, Nt):
           # Update all inner points at time t[n+1]
           for i in range(1, Nx):
               u[i] = - u_nm1[i] + 2*u_n[i] + \
                       C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
                       dt**2*f(x[i], t[n])
           # Insert boundary conditions
           u[0] = 0; u[Nx] = 0
           if user_action is not None:
               if user_action(u, x, t, n+1):
                   break
           # Switch variables before next step
           u_nm1[:] = u_n; u_n[:] = u
       cpu_time = time.clock() - t0
       return u, x, t,
    def test_quadratic():
       """Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""
       def u_exact(x, t):
           return x*(L-x)*(1 + 0.5*t)
       def I(x):
           return u_exact(x, 0)
       def V(x):
           return 0.5*u_exact(x, 0)
       def f(x, t):
           return 2*(1 + 0.5*t)*c**2
       L = 2.5
       c = 1.5
       cc = 0.75
       Nx = 6 # Very coarse mesh for this exact test
       dt = cc*(L/Nx)/c
       T = 18
       def assert_no_error(u, x, t, n):
           u_e = u_exact(x, t[n])
           diff = np.abs(u - u_e).max()
           tol = 1E-13
           assert diff < tol
       solver(I, V, f, c, L, dt, cc, T,
               user_action=assert_no_error)
    def viz(
       I, V, f, c, L, dt, C, T,umin, umax, animate=True, tool='matplotlib'):
       """Run solver and visualize u at each time level."""
       def plot_u_st(u, x, t, n):
           """user_action function for solver."""
           plt.plot(x, u, 'r-')
    #                 xlabel='x', ylabel='u',
    #                 axis=[0, L, umin, umax],
    #                 title='t=%f' % t[n], show=True)
           # Let the initial condition stay on the screen for 2
           # seconds, else insert a pause of 0.2 s between each plot
           time.sleep(2) if t[n] == 0 else time.sleep(0.2)
           plt.savefig('frame_%04d.png' % n) # for movie making
       class PlotMatplotlib:
           def __call__(self, u, x, t, n):
               """user_action function for solver."""
               if n == 0:
                   plt.ion()
                   self.lines = plt.plot(x, u, 'r-')
                   plt.xlabel('x'); plt.ylabel('u')
                   plt.axis([0, L, umin, umax])
                   plt.legend(['t=%f' % t[n]], loc='lower left')
               else:
                   self.lines[0].set_ydata(u)
                   plt.legend(['t=%f' % t[n]], loc='lower left')
                   plt.draw()
               time.sleep(2) if t[n] == 0 else time.sleep(0.2)
               plt.savefig('tmp_%04d.png' % n) # for movie making
       if tool == 'matplotlib':
           import matplotlib.pyplot as plt
           plot_u = PlotMatplotlib()
       elif tool == 'scitools':
           import scitools.std as plt # scitools.easyviz interface
           plot_u = plot_u_st
       import time, glob, os
       # Clean up old movie frames
       for filename in glob.glob('tmp_*.png'):
           os.remove(filename)
       # Call solver and do the simulaton
       user_action = plot_u if animate else None
       u, x, t, cpu = solver_function(
           I, V, f, c, L, dt, C, T, user_action)
       # Make video files
       fps = 4 # frames per second
       codec2ext = dict(flv='flv', libx264='mp4', libvpx='webm',
                        libtheora='ogg') # video formats
       filespec = 'tmp_%04d.png'
       movie_program = 'ffmpeg' # or 'avconv'
       for codec in codec2ext:
           ext = codec2ext[codec]
           cmd = '%(movie_program)s -r %(fps)d -i %(filespec)s '\
                 '-vcodec %(codec)s movie.%(ext)s' % vars()
           os.system(cmd)
       if tool == 'scitools':
           # Make an HTML play for showing the animation in a browser
           plt.movie('tmp_*.png', encoder='html', fps=fps,
                     output_file='movie.html')
       return cpu
  • Animating a 2D plot (2D brownian motion) not working in Python

    8 avril 2020, par Thamu Mnyulwa

    I am trying to plot a 2D Brownian motion in Python but my plot plots the grid but does not animate the line.

    



    Attempted at performing this plot is below,

    



    !apt install ffmpeg

import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import matplotlib.animation as animation


np.random.seed(5)


# Set up formatting for the movie files
Writer = animation.writers['ffmpeg']
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)


def generateRandomLines(dt, N):
    dX = np.sqrt(dt) * np.random.randn(1, N)
    X = np.cumsum(dX, axis=1)

    dY = np.sqrt(dt) * np.random.randn(1, N)
    Y = np.cumsum(dY, axis=1)

    lineData = np.vstack((X, Y))

    return lineData


# Returns Line2D objects
def updateLines(num, dataLines, lines):
    for u, v in zip(lines, dataLines):
        u.set_data(v[0:2, :num])

    return lines

N = 501 # Number of points
T = 1.0
dt = T/(N-1)


fig, ax = plt.subplots()

data = [generateRandomLines(dt, N)]

ax = plt.axes(xlim=(-2.0, 2.0), ylim=(-2.0, 2.0))

ax.set_xlabel('X(t)')
ax.set_ylabel('Y(t)')
ax.set_title('2D Discretized Brownian Paths')

## Create a list of line2D objects
lines = [ax.plot(dat[0, 0:1], dat[1, 0:1])[0] for dat in data]


## Create the animation object
anim = animation.FuncAnimation(fig, updateLines, N+1, fargs=(data, lines), interval=30, repeat=True, blit=False)

plt.tight_layout()
plt.show()

## Uncomment to save the animation
#anim.save('brownian2d_1path.mp4', writer=writer)


    



    However, instead of performing the plot the program is printing,
enter image description here

    



    How do I animate this plot ? I am new to python so I apologize in advanced if this is an easy question.

    



    I found this question on http://people.bu.edu/andasari/courses/stochasticmodeling/lecture5/stochasticlecture5.html , there is a walkthrough of how this code came to being.