
Recherche avancée
Médias (1)
-
Rennes Emotion Map 2010-11
19 octobre 2011, par
Mis à jour : Juillet 2013
Langue : français
Type : Texte
Autres articles (70)
-
Participer à sa traduction
10 avril 2011Vous pouvez nous aider à améliorer les locutions utilisées dans le logiciel ou à traduire celui-ci dans n’importe qu’elle nouvelle langue permettant sa diffusion à de nouvelles communautés linguistiques.
Pour ce faire, on utilise l’interface de traduction de SPIP où l’ensemble des modules de langue de MediaSPIP sont à disposition. ll vous suffit de vous inscrire sur la liste de discussion des traducteurs pour demander plus d’informations.
Actuellement MediaSPIP n’est disponible qu’en français et (...) -
Submit bugs and patches
13 avril 2011Unfortunately a software is never perfect.
If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
You may also (...) -
Multilang : améliorer l’interface pour les blocs multilingues
18 février 2011, parMultilang est un plugin supplémentaire qui n’est pas activé par défaut lors de l’initialisation de MediaSPIP.
Après son activation, une préconfiguration est mise en place automatiquement par MediaSPIP init permettant à la nouvelle fonctionnalité d’être automatiquement opérationnelle. Il n’est donc pas obligatoire de passer par une étape de configuration pour cela.
Sur d’autres sites (14388)
-
Nexus One
19 mars 2010, par Mans — UncategorizedI have had a Nexus One for about a week (thanks Google), and naturally I have an opinion or two about it.
Hardware
With the front side dominated by a touch-screen and a lone, round button, the Nexus One appearance is similar to that of most contemporary smartphones. The reverse sports a 5 megapixel camera with LED flash, a Google logo, and a smaller HTC logo. Power button, volume control, and headphone and micro-USB sockets are found along the edges. It is with appreciation I note the lack of a front-facing camera ; the silly idea of video calls is finally put to rest.
Powering up the phone (I’m beginning to question the applicability of that word), I am immediately enamoured with the display. At 800×480 pixels, the AMOLED display is crystal-clear and easily viewable even in bright light. In a darker environment, the display automatically dims. The display does have one quirk in that the subpixel pattern doesn’t actually have a full RGB triplet for each pixel. The close-up photo below shows the pattern seen when displaying a solid white colour.
The result of this is that fine vertical lines, particularly red or blue ones, look a bit jagged. Most of the time this is not much of a problem, and I find it an acceptable compromise for the higher effective resolution it provides.
Basic interaction
The Android system is by now familiar, and the Nexus offers no surprises in basic usage. All the usual applications come pre-installed : browser, email, calendar, contacts, maps, and even voice calls. Many of the applications integrate with a Google account, which is nice. Calendar entries, map placemarks, etc. are automatically shared between desktop and mobile. Gone is the need for the bug-ridden custom synchronisation software with which mobile phones of the past were plagued.
Launching applications is mostly speedy, and recently used apps are kept loaded as long as memory needs allow. Although this garbage-collection-style of application management, where you are never quite sure whether an app is still running, takes a few moments of acclimatisation, it works reasonably well in day to day use. Most of the applications are well-behaved and save their data before terminating.
Email
Two email applications are included out of the box : one generic and one Gmail-only. As I do not use Gmail, I cannot comment on this application. The generic email client supports IMAP, but is rather limited in functionality. Fortunately, a much-enhanced version, K-9, is available for download. The main feature I find lacking here is threaded message view.
The features, or lack thereof, in the email applications is not, however, of huge importance, as composing email, or any longer piece of text, is something one rather avoids on a system like this. The on-screen keyboard, while falling among the better of its kind, is still slow to use. Lack of tactile feedback means accidentally tapping the wrong key is easily done, and entering numbers or punctuation is an outright chore.
Browser
Whatever the Nexus lacks in email abilities, it makes up for with the browser. Surfing the web on a phone has never been this pleasant. Page rendering is quick, and zooming is fast and simple. Even pages not designed for mobile viewing are easy to read with smart reformatting almost entirely eliminating the sideways scrolling which hampered many a mobile browser of old.
Calls and messaging
Being a phone, the Nexus One is obviously able to make and receive calls, and it does so with ease. Entering a number or locating a stored contact are both straight-forward operations. During a call, audio is clear and of adequate loudness, although I have yet to use the phone in really noisy surroundings.
The other traditional task of a mobile phone, messaging, is also well-supported. There isn’t really much to say about this.
Multimedia
Having a bit of an interest in most things multimedia, I obviously tested the capabilities of the Nexus by throwing some assorted samples at it, revealing ample space for improvement. With video limited to H.264 and MPEG4, and the only supported audio codecs being AAC, MP3, Vorbis, and AMR, there are many files which will not play.
To make matters worse, only selected combinations of audio and video will play together. Several video files I tested played without sound, yet when presented with the very same audio data alone, it was correctly decoded. As for container formats, it appears restricted to MP4/MOV, and Ogg (for Vorbis). AVI files are recognised as media files, but I was unable to find an AVI file which would play.
With a device clearly capable of so much more, the poor multimedia support is nothing short of embarrassing.
The Market
Much of the hype surrounding Android revolves around the Market, Google’s virtual marketplace for app authors to sell or give away their creations. The thousands of available applications are broadly categorised, and a search function is available.
The categorised lists are divided into free and paid sections, while search results, disappointingly, are not. To aid the decision, ratings and comments are displayed alongside the summary and screenshots of each application. Overall, the process of finding and installing an application is mostly painless. While it could certainly be improved, it could also have been much worse.
The applications themselves are, as hinted above, beyond numerous. Sadly, quality does not quite match up to quantity. The vast majority of the apps are pointless, though occasionally mildly amusing, gimmicks of no practical value. The really good ones, and they do exist, are very hard to find unless one knows precisely what to look for.
Battery
Packing great performance into a pocket-size device comes with a price in battery life. The battery in the Nexus lasts considerably shorter time than that in my older, less feature-packed Nokia phone. To some extent this is probably a result of me actually using it a lot more, yet the end result is the same : more frequent recharging. I should probably get used to the idea of recharging the phone every other night.
Verdict
The Nexus One is a capable hardware platform running an OS with plenty of potential. The applications are still somewhat lacking (or very hard to find), although the basic features work reasonably well. Hopefully future Android updates will see more and better core applications integrated, and I imagine that over time, I will find third-party apps to solve my problems in a way I like. I am not putting this phone on the shelf just yet.
-
Announcing the world’s fastest VP8 decoder : ffvp8
Back when I originally reviewed VP8, I noted that the official decoder, libvpx, was rather slow. While there was no particular reason that it should be much faster than a good H.264 decoder, it shouldn’t have been that much slower either ! So, I set out with Ronald Bultje and David Conrad to make a better one in FFmpeg. This one would be community-developed and free from the beginning, rather than the proprietary code-dump that was libvpx. A few weeks ago the decoder was complete enough to be bit-exact with libvpx, making it the first independent free implementation of a VP8 decoder. Now, with the first round of optimizations complete, it should be ready for primetime. I’ll go into some detail about the development process, but first, let’s get to the real meat of this post : the benchmarks.
We tested on two 1080p clips : Parkjoy, a live-action 1080p clip, and the Sintel trailer, a CGI 1080p clip. Testing was done using “time ffmpeg -vcodec libvpx or vp8 -i input -vsync 0 -an -f null -”. We all used the latest SVN FFmpeg at the time of this posting ; the last revision optimizing the VP8 decoder was r24471.
As these benchmarks show, ffvp8 is clearly much faster than libvpx, particularly on 64-bit. It’s even faster by a large margin on Atom, despite the fact that we haven’t even begun optimizing for it. In many cases, ffvp8′s extra speed can make the difference between a video that plays and one that doesn’t, especially in modern browsers with software compositing engines taking up a lot of CPU time. Want to get faster playback of VP8 videos ? The next versions of FFmpeg-based players, like VLC, will include ffvp8. Want to get faster playback of WebM in your browser ? Lobby your browser developers to use ffvp8 instead of libvpx. I expect Chrome to switch first, as they already use libavcodec for most of their playback system.
Keep in mind ffvp8 is not “done” — we will continue to improve it and make it faster. We still have a number of optimizations in the pipeline that aren’t committed yet.
Developing ffvp8
The initial challenge, primarily pioneered by David and Ronald, was constructing the core decoder and making it bit-exact to libvpx. This was rather challenging, especially given the lack of a real spec. Many parts of the spec were outright misleading and contradicted libvpx itself. It didn’t help that the suite of official conformance tests didn’t even cover all the features used by the official encoder ! We’ve already started adding our own conformance tests to deal with this. But I’ve complained enough in past posts about the lack of a spec ; let’s get onto the gritty details.
The next step was adding SIMD assembly for all of the important DSP functions. VP8′s motion compensation and deblocking filter are by far the most CPU-intensive parts, much the same as in H.264. Unlike H.264, the deblocking filter relies on a lot of internal saturation steps, which are free in SIMD but costly in a normal C implementation, making the plain C code even slower. Of course, none of this is a particularly large problem ; any sane video decoder has all this stuff in SIMD.
I tutored Ronald in x86 SIMD and wrote most of the motion compensation, intra prediction, and some inverse transforms. Ronald wrote the rest of the inverse transforms and a bit of the motion compensation. He also did the most difficult part : the deblocking filter. Deblocking filters are always a bit difficult because every one is different. Motion compensation, by comparison, is usually very similar regardless of video format ; a 6-tap filter is a 6-tap filter, and most of the variation going on is just the choice of numbers to multiply by.
The biggest challenge in an SIMD deblocking filter is to avoid unpacking, that is, going from 8-bit to 16-bit. Many operations in deblocking filters would naively appear to require more than 8-bit precision. A simple example in the case of x86 is abs(a-b), where a and b are 8-bit unsigned integers. The result of “a-b” requires a 9-bit signed integer (it can be anywhere from -255 to 255), so it can’t fit in 8-bit. But this is quite possible to do without unpacking : (satsub(a,b) | satsub(b,a)), where “satsub” performs a saturating subtract on the two values. If the value is positive, it yields the result ; if the value is negative, it yields zero. Oring the two together yields the desired result. This requires 4 ops on x86 ; unpacking would probably require at least 10, including the unpack and pack steps.
After the SIMD came optimizing the C code, which still took a significant portion of the total runtime. One of my biggest optimizations was adding aggressive “smart” prefetching to reduce cache misses. ffvp8 prefetches the reference frames (PREVIOUS, GOLDEN, and ALTREF)… but only the ones which have been used reasonably often this frame. This lets us prefetch everything we need without prefetching things that we probably won’t use. libvpx very often encodes frames that almost never (but not quite never) use GOLDEN or ALTREF, so this optimization greatly reduces time spent prefetching in a lot of real videos. There are of course countless other optimizations we made that are too long to list here as well, such as David’s entropy decoder optimizations. I’d also like to thank Eli Friedman for his invaluable help in benchmarking a lot of these changes.
What next ? Altivec (PPC) assembly is almost nonexistent, with the only functions being David’s motion compensation code. NEON (ARM) is completely nonexistent : we’ll need that to be fast on mobile devices as well. Of course, all this will come in due time — and as always — patches welcome !
Appendix : the raw numbers
Here’s the raw numbers (in fps) for the graphs at the start of this post, with standard error values :
Core i7 620QM (1.6Ghz), Windows 7, 32-bit :
Parkjoy ffvp8 : 44.58 0.44
Parkjoy libvpx : 33.06 0.23
Sintel ffvp8 : 74.26 1.18
Sintel libvpx : 56.11 0.96Core i5 520M (2.4Ghz), Linux, 64-bit :
Parkjoy ffvp8 : 68.29 0.06
Parkjoy libvpx : 41.06 0.04
Sintel ffvp8 : 112.38 0.37
Sintel libvpx : 69.64 0.09Core 2 T9300 (2.5Ghz), Mac OS X 10.6.4, 64-bit :
Parkjoy ffvp8 : 54.09 0.02
Parkjoy libvpx : 33.68 0.01
Sintel ffvp8 : 87.54 0.03
Sintel libvpx : 52.74 0.04Core Duo (2Ghz), Mac OS X 10.6.4, 32-bit :
Parkjoy ffvp8 : 21.31 0.02
Parkjoy libvpx : 17.96 0.00
Sintel ffvp8 : 41.24 0.01
Sintel libvpx : 29.65 0.02Atom N270 (1.6Ghz), Linux, 32-bit :
Parkjoy ffvp8 : 15.29 0.01
Parkjoy libvpx : 12.46 0.01
Sintel ffvp8 : 26.87 0.05
Sintel libvpx : 20.41 0.02 -
Announcing the world’s fastest VP8 decoder : ffvp8
Back when I originally reviewed VP8, I noted that the official decoder, libvpx, was rather slow. While there was no particular reason that it should be much faster than a good H.264 decoder, it shouldn’t have been that much slower either ! So, I set out with Ronald Bultje and David Conrad to make a better one in FFmpeg. This one would be community-developed and free from the beginning, rather than the proprietary code-dump that was libvpx. A few weeks ago the decoder was complete enough to be bit-exact with libvpx, making it the first independent free implementation of a VP8 decoder. Now, with the first round of optimizations complete, it should be ready for primetime. I’ll go into some detail about the development process, but first, let’s get to the real meat of this post : the benchmarks.
We tested on two 1080p clips : Parkjoy, a live-action 1080p clip, and the Sintel trailer, a CGI 1080p clip. Testing was done using “time ffmpeg -vcodec libvpx or vp8 -i input -vsync 0 -an -f null -”. We all used the latest SVN FFmpeg at the time of this posting ; the last revision optimizing the VP8 decoder was r24471.
As these benchmarks show, ffvp8 is clearly much faster than libvpx, particularly on 64-bit. It’s even faster by a large margin on Atom, despite the fact that we haven’t even begun optimizing for it. In many cases, ffvp8′s extra speed can make the difference between a video that plays and one that doesn’t, especially in modern browsers with software compositing engines taking up a lot of CPU time. Want to get faster playback of VP8 videos ? The next versions of FFmpeg-based players, like VLC, will include ffvp8. Want to get faster playback of WebM in your browser ? Lobby your browser developers to use ffvp8 instead of libvpx. I expect Chrome to switch first, as they already use libavcodec for most of their playback system.
Keep in mind ffvp8 is not “done” — we will continue to improve it and make it faster. We still have a number of optimizations in the pipeline that aren’t committed yet.
Developing ffvp8
The initial challenge, primarily pioneered by David and Ronald, was constructing the core decoder and making it bit-exact to libvpx. This was rather challenging, especially given the lack of a real spec. Many parts of the spec were outright misleading and contradicted libvpx itself. It didn’t help that the suite of official conformance tests didn’t even cover all the features used by the official encoder ! We’ve already started adding our own conformance tests to deal with this. But I’ve complained enough in past posts about the lack of a spec ; let’s get onto the gritty details.
The next step was adding SIMD assembly for all of the important DSP functions. VP8′s motion compensation and deblocking filter are by far the most CPU-intensive parts, much the same as in H.264. Unlike H.264, the deblocking filter relies on a lot of internal saturation steps, which are free in SIMD but costly in a normal C implementation, making the plain C code even slower. Of course, none of this is a particularly large problem ; any sane video decoder has all this stuff in SIMD.
I tutored Ronald in x86 SIMD and wrote most of the motion compensation, intra prediction, and some inverse transforms. Ronald wrote the rest of the inverse transforms and a bit of the motion compensation. He also did the most difficult part : the deblocking filter. Deblocking filters are always a bit difficult because every one is different. Motion compensation, by comparison, is usually very similar regardless of video format ; a 6-tap filter is a 6-tap filter, and most of the variation going on is just the choice of numbers to multiply by.
The biggest challenge in an SIMD deblocking filter is to avoid unpacking, that is, going from 8-bit to 16-bit. Many operations in deblocking filters would naively appear to require more than 8-bit precision. A simple example in the case of x86 is abs(a-b), where a and b are 8-bit unsigned integers. The result of “a-b” requires a 9-bit signed integer (it can be anywhere from -255 to 255), so it can’t fit in 8-bit. But this is quite possible to do without unpacking : (satsub(a,b) | satsub(b,a)), where “satsub” performs a saturating subtract on the two values. If the value is positive, it yields the result ; if the value is negative, it yields zero. Oring the two together yields the desired result. This requires 4 ops on x86 ; unpacking would probably require at least 10, including the unpack and pack steps.
After the SIMD came optimizing the C code, which still took a significant portion of the total runtime. One of my biggest optimizations was adding aggressive “smart” prefetching to reduce cache misses. ffvp8 prefetches the reference frames (PREVIOUS, GOLDEN, and ALTREF)… but only the ones which have been used reasonably often this frame. This lets us prefetch everything we need without prefetching things that we probably won’t use. libvpx very often encodes frames that almost never (but not quite never) use GOLDEN or ALTREF, so this optimization greatly reduces time spent prefetching in a lot of real videos. There are of course countless other optimizations we made that are too long to list here as well, such as David’s entropy decoder optimizations. I’d also like to thank Eli Friedman for his invaluable help in benchmarking a lot of these changes.
What next ? Altivec (PPC) assembly is almost nonexistent, with the only functions being David’s motion compensation code. NEON (ARM) is completely nonexistent : we’ll need that to be fast on mobile devices as well. Of course, all this will come in due time — and as always — patches welcome !
Appendix : the raw numbers
Here’s the raw numbers (in fps) for the graphs at the start of this post, with standard error values :
Core i7 620QM (1.6Ghz), Windows 7, 32-bit :
Parkjoy ffvp8 : 44.58 0.44
Parkjoy libvpx : 33.06 0.23
Sintel ffvp8 : 74.26 1.18
Sintel libvpx : 56.11 0.96Core i5 520M (2.4Ghz), Linux, 64-bit :
Parkjoy ffvp8 : 68.29 0.06
Parkjoy libvpx : 41.06 0.04
Sintel ffvp8 : 112.38 0.37
Sintel libvpx : 69.64 0.09Core 2 T9300 (2.5Ghz), Mac OS X 10.6.4, 64-bit :
Parkjoy ffvp8 : 54.09 0.02
Parkjoy libvpx : 33.68 0.01
Sintel ffvp8 : 87.54 0.03
Sintel libvpx : 52.74 0.04Core Duo (2Ghz), Mac OS X 10.6.4, 32-bit :
Parkjoy ffvp8 : 21.31 0.02
Parkjoy libvpx : 17.96 0.00
Sintel ffvp8 : 41.24 0.01
Sintel libvpx : 29.65 0.02Atom N270 (1.6Ghz), Linux, 32-bit :
Parkjoy ffvp8 : 15.29 0.01
Parkjoy libvpx : 12.46 0.01
Sintel ffvp8 : 26.87 0.05
Sintel libvpx : 20.41 0.02