
Recherche avancée
Médias (1)
-
Carte de Schillerkiez
13 mai 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
Autres articles (51)
-
Les tâches Cron régulières de la ferme
1er décembre 2010, parLa gestion de la ferme passe par l’exécution à intervalle régulier de plusieurs tâches répétitives dites Cron.
Le super Cron (gestion_mutu_super_cron)
Cette tâche, planifiée chaque minute, a pour simple effet d’appeler le Cron de l’ensemble des instances de la mutualisation régulièrement. Couplée avec un Cron système sur le site central de la mutualisation, cela permet de simplement générer des visites régulières sur les différents sites et éviter que les tâches des sites peu visités soient trop (...) -
Personnaliser les catégories
21 juin 2013, parFormulaire de création d’une catégorie
Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
On peut modifier ce formulaire dans la partie :
Administration > Configuration des masques de formulaire.
Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...) -
Submit bugs and patches
13 avril 2011Unfortunately a software is never perfect.
If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
You may also (...)
Sur d’autres sites (9604)
-
Merging input Streams with nodejs/ffmpeg
14 septembre 2020, par jAndyI'm creating a very basic and rudimentary Video-Web-Chat. On the client side, I'm going to use a simple
getUserMedia
API call to capture the webcam data and send video-data asdata-blob
to my server.

From There, I'm planning to either use the
fluent-ffmpeg
library or just spawnffmpeg
myself and pipe that raw data toffmpeg
, which in turn, does some magic and pushes that out asHLS
stream to an Amazon AWS Service (for instance), which then gets actually displayed on a Web Browser for all participating people in the video chat.

So far, I think all of this should be fairly easy to implement, but I keep my head spinning around the question, how I can create a "combined" or "merged" frame and stream, so the output HLS data from my server to the distributing cloud service has only to be one combined data stream to receive.


If there are 3 people in that video chat, my server receives 3 data streams from those clients and combines these data streams (from the individual web-cam data sources) into one output stream.


How could that be accomplished ?
Can I "create" a new frame with
ffmpeg
, so to speak ? I would be very thankful if anybody could give me a heads up here, maybe I'm thinking in a complete wrong direction.

Another question which arises to me is, if I really can just "dump" any data, which I'm receiving from a binary blob created from
getUserMedia
orMultiStreamRecorder
toffmpeg
or if I have to specify somewhere and somehow the exact codecs being used etc.?

-
swscale/aarch64 : add vscale specializations
13 août 2022, par Swinney, Jonathanswscale/aarch64 : add vscale specializations
This commit adds new code paths for vscale when filterSize is 2, 4, or
8. By using specialized code with unrolling to match the filterSize we
can improve performance.On AWS c7g (Graviton 3, Neoverse V1) instances :
before after
yuv2yuvX_2_0_512_accurate_neon : 558.8 268.9
yuv2yuvX_4_0_512_accurate_neon : 637.5 434.9
yuv2yuvX_8_0_512_accurate_neon : 1144.8 806.2
yuv2yuvX_16_0_512_accurate_neon : 2080.5 1853.7Signed-off-by : Jonathan Swinney <jswinney@amazon.com>
Signed-off-by : Martin Storsjö <martin@martin.st> -
Error : ffmpeg exited with code 1 on AWS Lambda
16 juin 2022, par Hassnain AlviI am using fluent-ffmpeg nodejs package to run ffmpeg for audio conversion on AWS Lambda. I am using this FFmpeg layer for lambda.
Here is my code


const bitrate64 = ffmpeg("file.mp3").audioBitrate('64k');
 bitrate64.outputOptions([
 '-preset slow',
 '-g 48',
 "-map", "0:0",
 '-hls_time 6',
 '-master_pl_name master.m3u8',
 '-hls_segment_filename 64k/fileSequence%d.ts'
 ])
 .output('./64k/prog_index.m3u8')
 .on('progress', function(progress) {
 console.log('Processing 64k bitrate: ' + progress.percent + '% done')
 }) 
 .on('end', function(err, stdout, stderr) {
 console.log('Finished processing 64k bitrate!')
 })
 .run() 



after running it via AWS lambda I get following error message


ERROR Uncaught Exception 
{
 "errorType": "Error",
 "errorMessage": "ffmpeg exited with code 1: Conversion failed!\n",
 "stack": [
 "Error: ffmpeg exited with code 1: Conversion failed!",
 "",
 " at ChildProcess.<anonymous> (/var/task/node_modules/fluent-ffmpeg/lib/processor.js:182:22)",
 " at ChildProcess.emit (events.js:198:13)",
 " at ChildProcess.EventEmitter.emit (domain.js:448:20)",
 " at Process.ChildProcess._handle.onexit (internal/child_process.js:248:12)"
 ]
}
</anonymous>


I don't get any more info so I am not sure what's going on. Can anyone tell me what's wrong here and how can I enable more detailed logs ?