Recherche avancée

Médias (91)

Autres articles (38)

  • Websites made ​​with MediaSPIP

    2 mai 2011, par

    This page lists some websites based on MediaSPIP.

  • Creating farms of unique websites

    13 avril 2011, par

    MediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
    This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)

  • Other interesting software

    13 avril 2011, par

    We don’t claim to be the only ones doing what we do ... and especially not to assert claims to be the best either ... What we do, we just try to do it well and getting better ...
    The following list represents softwares that tend to be more or less as MediaSPIP or that MediaSPIP tries more or less to do the same, whatever ...
    We don’t know them, we didn’t try them, but you can take a peek.
    Videopress
    Website : http://videopress.com/
    License : GNU/GPL v2
    Source code : (...)

Sur d’autres sites (5743)

  • Announcing the world’s fastest VP8 decoder : ffvp8

    24 juillet 2010, par Dark Shikari — VP8, ffmpeg, google, speed

    Back when I originally reviewed VP8, I noted that the official decoder, libvpx, was rather slow. While there was no particular reason that it should be much faster than a good H.264 decoder, it shouldn’t have been that much slower either ! So, I set out with Ronald Bultje and David Conrad to make a better one in FFmpeg. This one would be community-developed and free from the beginning, rather than the proprietary code-dump that was libvpx. A few weeks ago the decoder was complete enough to be bit-exact with libvpx, making it the first independent free implementation of a VP8 decoder. Now, with the first round of optimizations complete, it should be ready for primetime. I’ll go into some detail about the development process, but first, let’s get to the real meat of this post : the benchmarks.

    We tested on two 1080p clips : Parkjoy, a live-action 1080p clip, and the Sintel trailer, a CGI 1080p clip. Testing was done using “time ffmpeg -vcodec libvpx or vp8 -i input -vsync 0 -an -f null -”. We all used the latest SVN FFmpeg at the time of this posting ; the last revision optimizing the VP8 decoder was r24471.

    Parkjoy graphSintel graph

    As these benchmarks show, ffvp8 is clearly much faster than libvpx, particularly on 64-bit. It’s even faster by a large margin on Atom, despite the fact that we haven’t even begun optimizing for it. In many cases, ffvp8′s extra speed can make the difference between a video that plays and one that doesn’t, especially in modern browsers with software compositing engines taking up a lot of CPU time. Want to get faster playback of VP8 videos ? The next versions of FFmpeg-based players, like VLC, will include ffvp8. Want to get faster playback of WebM in your browser ? Lobby your browser developers to use ffvp8 instead of libvpx. I expect Chrome to switch first, as they already use libavcodec for most of their playback system.

    Keep in mind ffvp8 is not “done” — we will continue to improve it and make it faster. We still have a number of optimizations in the pipeline that aren’t committed yet.

    Developing ffvp8

    The initial challenge, primarily pioneered by David and Ronald, was constructing the core decoder and making it bit-exact to libvpx. This was rather challenging, especially given the lack of a real spec. Many parts of the spec were outright misleading and contradicted libvpx itself. It didn’t help that the suite of official conformance tests didn’t even cover all the features used by the official encoder ! We’ve already started adding our own conformance tests to deal with this. But I’ve complained enough in past posts about the lack of a spec ; let’s get onto the gritty details.

    The next step was adding SIMD assembly for all of the important DSP functions. VP8′s motion compensation and deblocking filter are by far the most CPU-intensive parts, much the same as in H.264. Unlike H.264, the deblocking filter relies on a lot of internal saturation steps, which are free in SIMD but costly in a normal C implementation, making the plain C code even slower. Of course, none of this is a particularly large problem ; any sane video decoder has all this stuff in SIMD.

    I tutored Ronald in x86 SIMD and wrote most of the motion compensation, intra prediction, and some inverse transforms. Ronald wrote the rest of the inverse transforms and a bit of the motion compensation. He also did the most difficult part : the deblocking filter. Deblocking filters are always a bit difficult because every one is different. Motion compensation, by comparison, is usually very similar regardless of video format ; a 6-tap filter is a 6-tap filter, and most of the variation going on is just the choice of numbers to multiply by.

    The biggest challenge in an SIMD deblocking filter is to avoid unpacking, that is, going from 8-bit to 16-bit. Many operations in deblocking filters would naively appear to require more than 8-bit precision. A simple example in the case of x86 is abs(a-b), where a and b are 8-bit unsigned integers. The result of “a-b” requires a 9-bit signed integer (it can be anywhere from -255 to 255), so it can’t fit in 8-bit. But this is quite possible to do without unpacking : (satsub(a,b) | satsub(b,a)), where “satsub” performs a saturating subtract on the two values. If the value is positive, it yields the result ; if the value is negative, it yields zero. Oring the two together yields the desired result. This requires 4 ops on x86 ; unpacking would probably require at least 10, including the unpack and pack steps.

    After the SIMD came optimizing the C code, which still took a significant portion of the total runtime. One of my biggest optimizations was adding aggressive “smart” prefetching to reduce cache misses. ffvp8 prefetches the reference frames (PREVIOUS, GOLDEN, and ALTREF)… but only the ones which have been used reasonably often this frame. This lets us prefetch everything we need without prefetching things that we probably won’t use. libvpx very often encodes frames that almost never (but not quite never) use GOLDEN or ALTREF, so this optimization greatly reduces time spent prefetching in a lot of real videos. There are of course countless other optimizations we made that are too long to list here as well, such as David’s entropy decoder optimizations. I’d also like to thank Eli Friedman for his invaluable help in benchmarking a lot of these changes.

    What next ? Altivec (PPC) assembly is almost nonexistent, with the only functions being David’s motion compensation code. NEON (ARM) is completely nonexistent : we’ll need that to be fast on mobile devices as well. Of course, all this will come in due time — and as always — patches welcome !

    Appendix : the raw numbers

    Here’s the raw numbers (in fps) for the graphs at the start of this post, with standard error values :

    Core i7 620QM (1.6Ghz), Windows 7, 32-bit :
    Parkjoy ffvp8 : 44.58 0.44
    Parkjoy libvpx : 33.06 0.23
    Sintel ffvp8 : 74.26 1.18
    Sintel libvpx : 56.11 0.96

    Core i5 520M (2.4Ghz), Linux, 64-bit :
    Parkjoy ffvp8 : 68.29 0.06
    Parkjoy libvpx : 41.06 0.04
    Sintel ffvp8 : 112.38 0.37
    Sintel libvpx : 69.64 0.09

    Core 2 T9300 (2.5Ghz), Mac OS X 10.6.4, 64-bit :
    Parkjoy ffvp8 : 54.09 0.02
    Parkjoy libvpx : 33.68 0.01
    Sintel ffvp8 : 87.54 0.03
    Sintel libvpx : 52.74 0.04

    Core Duo (2Ghz), Mac OS X 10.6.4, 32-bit :
    Parkjoy ffvp8 : 21.31 0.02
    Parkjoy libvpx : 17.96 0.00
    Sintel ffvp8 : 41.24 0.01
    Sintel libvpx : 29.65 0.02

    Atom N270 (1.6Ghz), Linux, 32-bit :
    Parkjoy ffvp8 : 15.29 0.01
    Parkjoy libvpx : 12.46 0.01
    Sintel ffvp8 : 26.87 0.05
    Sintel libvpx : 20.41 0.02

  • Dreamcast Anniversary Programming

    10 septembre 2010, par Multimedia Mike — Game Hacking

    This day last year saw a lot of nostalgia posts on the internet regarding the Sega Dreamcast, launched 10 years prior to that day (on 9/9/99). Regrettably, none of the retrospectives that I read really seemed to mention the homebrew potential, which is the aspect that interested me. On the occasion of the DC’s 11th anniversary, I wanted to remind myself how to build something for the unit and do so using modern equipment and build tools.



    Background
    Like many other programmers, I initially gained interest in programming because I desired to program video games. Not content to just plunk out games on a PC, I always had a deep, abiding ambition to program actual video game hardware. That is, I wanted to program a purpose-built video game console. The Sega Dreamcast might be the most ideal candidate to ever emerge for that task. All that was required to run your own software on the unit was the console, a PC, some free software tools, and a special connectivity measure.

    The Equipment
    Here is the hardware required (ideally) to build software for the DC :

    • The console itself (I happen to have 3 of them laying around, as pictured above)
    • Some peripherals : Such as the basic DC controller, the DC keyboard (flagship title : Typing of the Dead), and the visual memory unit (VMU)


    • VGA box : The DC supported 480p gaming via a device that allowed you to connect the console straight to a VGA monitor via 15-pin D-sub. Not required for development, but very useful. I happen to have 3 of them from different third parties :


    • Finally, the connectivity measure for hooking the DC to the PC.
      There are 2 options here. The first is rare, expensive and relatively fast : A DC broadband adapter. The second is slower but much less expensive and relatively easy to come by– the DC coder’s cable. This was a DB-9 adapter on one end and a DC serial adapter on the other, and a circuit in the middle to monkey with voltage levels or some such ; I’m no electrical engineer. I procured this model from the notorious Lik Sang, well before that outfit was sued out of business.


    Dealing With Legacy
    Take a look at that coder’s cable again. DB-9 ? When was the last time you owned a computer with one of those ? And then think farther back to the last time to had occasion to plug something into one of those ports (likely a serial mouse).



    A few years ago, someone was about to toss out this Belkin USB to DB-9 serial converter when I intervened. I foresaw the day when I would dust off the coder’s cable. So now I can connect a USB serial cable to my Eee PC, which then connects via converter to a different serial cable, one which has its own conversion circuit that alters the connection to yet another type of serial cable.

    Bits is bits is bits as far as I’m concerned.



    Putting It All Together
    Now to assemble all the pieces (plus a monitor) into one development desktop :



    The monitor says “dcload 1.0.3, idle…”. That’s a custom boot CD-ROM that is patiently waiting to receive commands, code and data via the serial port.

    Getting The Software
    Back in the day, homebrew software development on the DC revolved around these components :

    • GNU binutils : for building base toolchains for the Hitachi SH-4 main CPU as well as the ARM7-based audio coprocessor
    • GNU gcc/g++ : for building compilers on top of binutils for the 2 CPUs
    • Newlib : a C library intended for embedded systems
    • KallistiOS : an open source, real-time OS developed for the DC

    The DC was my first exposure to building cross compilers. I developed some software for the DC in the earlier part of the decade. Now, I am trying to figure out how I did it, especially since I think I came up with a few interesting ideas at the time.

    Struggling With the Software Legacy
    The source for KallistiOS has gone untouched since about 2004 but is still around thanks to Sourceforge. The instructions for properly building the toolchain have been lost to time, or would be were it not for the Internet Archive’s copy of a site called Hangar Eleven. Also, KallistiOS makes reference to a program called ‘dc-tool’ which is needed on the client side for communicating with dcload. I was able to find this binary at the Boob ! site (well-known in DC circles).

    I was able to build the toolchain using binutils 2.20.1, gcc 4.5.1 and newlib 1.18.0. Building the toolchain is an odd process as it requires building the binutils, then building the C compiler, then newlib, and then building the C compiler again along with the C++ compiler because the C++ compiler depends on newlib.

    With some effort, I got the toolchain to build KallistiOS and most of its example programs. I documented most of the tweaks I had to make, several of them exactly the same as this one that I recently discovered while resurrecting a 10-year-old C program (common construct in C programming of old ?).

    Moment of Truth
    So I had some example programs built as ELF files. I told dc-tool to upload and run them on the waiting console. Unfortunately, the tool would just sort of stall, though some communication had evidently taken place. It has been many years since I have seen this in action but I recall that something more ought to be happening.

    Plan B (Hardware)
    This is the point that I remember that I have been holding onto one rather old little machine that still has a DB-9 serial port. It’s not especially ergonomic to set up. I have to run it on my floor because, to connect it to my network, I need to run a 25′ ethernet cable that just barely reaches from the other room. The machine doesn’t seem to like USB keyboards, which is a shame since I have long since ditched any PS/2 keyboards. Fortunately, the box still has an old Gentoo distro and is running sshd, a holdover from its former life as a headless box.



    Now when I run dc-tool, both the PC and DC report the upload progress while pretty overscan bars oscillate on the DC’s monitor. Now I’m back in business, until…

    Plan C (Software)
    None of these KallistiOS example programs are working. Some are even reporting catastrophic failures (register dumps) via the serial console. That’s when I remember that gcc can be a bit fickle on CPU architectures that are not, shall we say, first-class citizens. Back in the day, gcc 2.95 was a certified no-go for SH-4 development. 3.0.3 or 3.0.4 was called upon at the time. As I’m hosting this toolchain on x86_64 right now, gcc 3.0.4 can’t even be built (predates the architecture).

    One last option : As I searched through my old DC project directories, I found that I still have a lot of the resulting binaries, the ones I built 7-8 years ago. I upload a few of those and I finally see homebrew programming at work again, including this old program (described in detail here).

    Next Steps
    If I ever feel like revisiting this again, I suppose I can try some of the older 4.x series to see if they build valid programs. Alternatively, try building an x86_32-hosted 3.0.4 toolchain which ought to be a known good. And if that fails, search a little bit more to find that there are still active Dreamcast communities out there on the internet which probably have development toolchain binaries ready for download.

  • Inside WebM Technology : VP8 Intra and Inter Prediction

    20 juillet 2010, par noreply@blogger.com (Lou Quillio)
    Continuing our series on WebM technology, I will discuss the use of prediction methods in the VP8 video codec, with special attention to the TM_PRED and SPLITMV modes, which are unique to VP8.

    First, some background. To encode a video frame, block-based codecs such as VP8 first divide the frame into smaller segments called macroblocks. Within each macroblock, the encoder can predict redundant motion and color information based on previously processed blocks. The redundant data can be subtracted from the block, resulting in more efficient compression.

    Image by Fido Factor, licensed under Creative Commons Attribution License.
    Based on a work at www.flickr.com

    A VP8 encoder uses two classes of prediction :
    • Intra prediction uses data within a single video frame
    • Inter prediction uses data from previously encoded frames
    The residual signal data is then encoded using other techniques, such as transform coding.

    VP8 Intra Prediction Modes
    VP8 intra prediction modes are used with three types of macroblocks :
    • 4x4 luma
    • 16x16 luma
    • 8x8 chroma
    Four common intra prediction modes are shared by these macroblocks :
    • H_PRED (horizontal prediction). Fills each column of the block with a copy of the left column, L.
    • V_PRED (vertical prediction). Fills each row of the block with a copy of the above row, A.
    • DC_PRED (DC prediction). Fills the block with a single value using the average of the pixels in the row above A and the column to the left of L.
    • TM_PRED (TrueMotion prediction). A mode that gets its name from a compression technique developed by On2 Technologies. In addition to the row A and column L, TM_PRED uses the pixel P above and to the left of the block. Horizontal differences between pixels in A (starting from P) are propagated using the pixels from L to start each row.
    For 4x4 luma blocks, there are six additional intra modes similar to V_PRED and H_PRED, but correspond to predicting pixels in different directions. These modes are outside the scope of this post, but if you want to learn more see the VP8 Bitstream Guide.

    As mentioned above, the TM_PRED mode is unique to VP8. The following figure uses an example 4x4 block of pixels to illustrate how the TM_PRED mode works :
    Where C, As and Ls represent reconstructed pixel values from previously coded blocks, and X00 through X33 represent predicted values for the current block. TM_PRED uses the following equation to calculate Xij :

    Xij = Li + Aj - C (i, j=0, 1, 2, 3)

    Although the above example uses a 4x4 block, the TM_PRED mode for 8x8 and 16x16 blocks works in the same fashion.
    TM_PRED is one of the more frequently used intra prediction modes in VP8, and for common video sequences it is typically used by 20% to 45% of all blocks that are intra coded. Overall, together with other intra prediction modes, TM_PRED helps VP8 to achieve very good compression efficiency, especially for key frames, which can only use intra modes (key frames by their very nature cannot refer to previously encoded frames).

    VP8 Inter Prediction Modes

    In VP8, inter prediction modes are used only on inter frames (non-key frames). For any VP8 inter frame, there are typically three previously coded reference frames that can be used for prediction. A typical inter prediction block is constructed using a motion vector to copy a block from one of the three frames. The motion vector points to the location of a pixel block to be copied. In most video compression schemes, a good portion of the bits are spent on encoding motion vectors ; the portion can be especially large for video encoded at lower datarates.

    Like previous VPx codecs, VP8 encodes motion vectors very efficiently by reusing vectors from neighboring macroblocks (a macroblock includes one 16x16 luma block and two 8x8 chroma blocks). VP8 uses a similar strategy in the overall design of inter prediction modes. For example, the prediction modes "NEAREST" and "NEAR" make use of last and second-to-last, non-zero motion vectors from neighboring macroblocks. These inter prediction modes can be used in combination with any of the three different reference frames.

    In addition, VP8 has a very sophisticated, flexible inter prediction mode called SPLITMV. This mode was designed to enable flexible partitioning of a macroblock into sub-blocks to achieve better inter prediction. SPLITMV is very useful when objects within a macroblock have different motion characteristics. Within a macroblock coded using SPLITMV mode, each sub-block can have its own motion vector. Similar to the strategy of reusing motion vectors at the macroblock level, a sub-block can also use motion vectors from neighboring sub-blocks above or left to the current block. This strategy is very flexible and can effectively encode any shape of sub-macroblock partitioning, and does so efficiently. Here is an example of a macroblock with 16x16 luma pixels that is partitioned to 16 4x4 blocks :


    where New represents a 4x4 bock coded with a new motion vector, and Left and Above represent a 4x4 block coded using the motion vector from the left and above, respectively. This example effectively partitions the 16x16 macroblock into 3 different segments with 3 different motion vectors (represented below by 1, 2 and 3) :


    Through effective use of intra and inter prediction modes, WebM encoder implementations can achieve great compression quality on a wide range of source material. If you want to delve further into VP8 prediction modes, read the VP8 Bitstream Guide or examine the reconintra.c and rdopt.c files in the VP8 source tree.

    Yaowu Xu, Ph.D. is a codec engineer at Google.