Recherche avancée

Médias (1)

Mot : - Tags -/école

Autres articles (38)

  • Websites made ​​with MediaSPIP

    2 mai 2011, par

    This page lists some websites based on MediaSPIP.

  • Creating farms of unique websites

    13 avril 2011, par

    MediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
    This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

Sur d’autres sites (7902)

  • What is Behavioural Segmentation and Why is it Important ?

    28 septembre 2023, par Erin — Analytics Tips

    Amidst the dynamic landscape of web analytics, understanding customers has grown increasingly vital for businesses to thrive. While traditional demographic-focused strategies possess merit, they need to uncover the nuanced intricacies of individual online behaviours and preferences. As customer expectations evolve in the digital realm, enterprises must recalibrate their approaches to remain relevant and cultivate enduring digital relationships.

    In this context, the surge of technology and advanced data analysis ushers in a marketing revolution : behavioural segmentation. Businesses can unearth invaluable insights by meticulously scrutinising user actions, preferences and online interactions. These insights lay the foundation for precisely honed, high-performing, personalised campaigns. The era dominated by blanket, catch-all marketing strategies is yielding to an era of surgical precision and tailored engagement. 

    While the insights from user behaviours empower businesses to optimise customer experiences, it’s essential to strike a delicate balance between personalisation and respecting user privacy. Ethical use of behavioural data ensures that the power of segmentation is wielded responsibly and in compliance, safeguarding user trust while enabling businesses to thrive in the digital age.

    What is behavioural segmentation ?

    Behavioural segmentation is a crucial concept in web analytics and marketing. It involves categorising individuals or groups of users based on their online behaviour, actions and interactions with a website. This segmentation method focuses on understanding how users engage with a website, their preferences and their responses to various stimuli. Behavioural segmentation classifies users into distinct segments based on their online activities, such as the pages they visit, the products they view, the actions they take and the time they spend on a site.

    Behavioural segmentation plays a pivotal role in web analytics for several reasons :

    1. Enhanced personalisation :

    Understanding user behaviour enables businesses to personalise online experiences. This aids with delivering tailored content and recommendations to boost conversion, customer loyalty and customer satisfaction.

    2. Improved user experience :

    Behavioural segmentation optimises user interfaces (UI) and navigation by identifying user paths and pain points, enhancing the level of engagement and retention.

    3. Targeted marketing :

    Behavioural segmentation enhances marketing efficiency by tailoring campaigns to user behaviour. This increases the likelihood of interest in specific products or services.

    4. Conversion rate optimisation :

    Analysing behavioural data reveals factors influencing user decisions, enabling website optimisation for a streamlined purchasing process and higher conversion rates.

    5. Data-driven decision-making :

    Behavioural segmentation empowers data-driven decisions. It identifies trends, behavioural patterns and emerging opportunities, facilitating adaptation to changing user preferences and market dynamics.

    6. Ethical considerations :

    Behavioural segmentation provides valuable insights but raises ethical concerns. User data collection and use must prioritise transparency, privacy and responsible handling to protect individuals’ rights.

    The significance of ethical behavioural segmentation will be explored more deeply in a later section, where we will delve into the ethical considerations and best practices for collecting, storing and utilising behavioural data in web analytics. It’s essential to strike a balance between harnessing the power of behavioural segmentation for business benefits and safeguarding user privacy and data rights in the digital age.

    A woman surrounded by doors shaped like heads of different

    Different types of behavioural segments with examples

    1. Visit-based segments : These segments hinge on users’ visit patterns. Analyse visit patterns, compare first-time visitors to returning ones, or compare users landing on specific pages to those landing on others.
      • Example : The real estate website Zillow can analyse how first-time visitors and returning users behave differently. By understanding these patterns, Zillow can customise its website for each group. For example, they can highlight featured listings and provide navigation tips for first-time visitors while offering personalised recommendations and saved search options for returning users. This could enhance user satisfaction and boost the chances of conversion.
    2. Interaction-based segments : Segments can be created based on user interactions like special events or goals completed on the site.
      • Example : Airbnb might use this to understand if users who successfully book accommodations exhibit different behaviours than those who don’t. This insight could guide refinements in the booking process for improved conversion rates.
    3. Campaign-based segments : Beyond tracking visit numbers, delve into usage differences of visitors from specific sources or ad campaigns for deeper insights.
      • Example : Nike might analyse user purchase behaviour from various traffic sources (referral websites, organic, direct, social media and ads). This informs marketing segmentation adjustments, focusing on high-performance channels. It also customises the website experience for different traffic sources, optimising content, promotions and navigation. This data-driven approach could boost user experiences and maximise marketing impact for improved brand engagement and sales conversions.
    4. Ecommerce segments : Separate users based on purchases, even examining the frequency of visits linked to specific products. Segment heavy users versus light users. This helps uncover diverse customer types and browsing behaviours.
      • Example : Amazon could create segments to differentiate between visitors who made purchases and those who didn’t. This segmentation could reveal distinct usage patterns and preferences, aiding Amazon in tailoring its recommendations and product offerings.
    5. Demographic segments : Build segments based on browser language or geographic location, for instance, to comprehend how user attributes influence site interactions.
      • Example : Netflix can create user segments based on demographic factors like geographic location to gain insight into how a visitor’s location can influence content preferences and viewing behaviour. This approach could allow for a more personalised experience.
    6. Technographic segments : Segment users by devices or browsers, revealing variations in site experience and potential platform-specific issues or user attitudes.
      • Example : Google could create segments based on users’ devices (e.g., mobile, desktop) to identify potential issues in rendering its search results. This information could be used to guide Google in providing consistent experiences regardless of device.
    A group of consumers split into different segments based on their behaviour

    The importance of ethical behavioural segmentation

    Respecting user privacy and data protection is crucial. Matomo offers features that align with ethical segmentation practices. These include :

    • Anonymization : Matomo allows for data anonymization, safeguarding individual identities while providing valuable insights.
    • GDPR compliance : Matomo is GDPR compliant, ensuring that user data is handled following European data protection regulations.
    • Data retention and deletion : Matomo enables businesses to set data retention policies and delete user data when it’s no longer needed, reducing the risk of data misuse.
    • Secured data handling : Matomo employs robust security measures to protect user data, reducing the risk of data breaches.

    Real-world examples of ethical behavioural segmentation :

    1. Content publishing : A leading news website could utilise data anonymization tools to ethically monitor user engagement. This approach allows them to optimise content delivery based on reader preferences while ensuring the anonymity and privacy of their target audience.
    2. Non-profit organisations : A charity organisation could embrace granular user control features. This could be used to empower its donors to manage their data preferences, building trust and loyalty among supporters by giving them control over their personal information.
    Person in a suit holding a red funnel that has data flowing through it into a file

    Examples of effective behavioural segmentation

    Companies are constantly using behavioural insights to engage their audiences effectively. In this section, we’ll delve into real-world examples showcasing how top companies use behavioural segmentation to enhance their marketing efforts.

    A woman standing in front of a pie chart pointing to the top right-hand section of customers in that segment
    1. Coca-Cola’s behavioural insights for marketing strategy : Coca-Cola employs behavioural segmentation to evaluate its advertising campaigns. Through analysing user engagement across TV commercials, social media promotions and influencer partnerships, Coca-Cola’s marketing team can discover that video ads shared by influencers generate the highest ROI and web traffic.

      This insight guides the reallocation of resources, leading to increased sales and a more effective advertising strategy.

    2. eBay’s custom conversion approach : eBay excels in conversion optimisation through behavioural segmentation. When users abandon carts, eBay’s dynamic system sends personalised email reminders featuring abandoned items and related recommendations tailored to user interests and past purchase decisions.

      This strategy revives sales, elevates conversion rates and sparks engagement. eBay’s adeptness in leveraging behavioural insights transforms user experience, steering a customer journey toward conversion.

    3. Sephora’s data-driven conversion enhancement : Data analysts can use Sephora’s behavioural segmentation strategy to fuel revenue growth through meticulous data analysis. By identifying a dedicated subset of loyal customers who exhibit a consistent preference for premium skincare products, data analysts enable Sephora to customise loyalty programs.

      These personalised rewards programs provide exclusive discounts and early access to luxury skincare releases, resulting in heightened customer engagement and loyalty. The data-driven precision of this approach directly contributes to amplified revenue from this specific customer segment.

    Examples of the do’s and don’ts of behavioural segmentation 

    Happy woman surrounded by icons of things and activities she enjoys

    Behavioural segmentation is a powerful marketing and data analysis tool, but its success hinges on ethical and responsible practices. In this section, we will explore real-world examples of the do’s and don’ts of behavioural segmentation, highlighting companies that have excelled in their approach and those that have faced challenges due to lapses in ethical considerations.

    Do’s of behavioural segmentation :

    • Personalised messaging :
      • Example : Spotify
        • Spotify’s success lies in its ability to use behavioural data to curate personalised playlists and user recommendations, enhancing its music streaming experience.
    • Transparency :
      • Example : Basecamp
        • Basecamp’s transparency in sharing how user data is used fosters trust. They openly communicate data practices, ensuring users are informed and comfortable.
    • Anonymization
      • Example : Matomo’s anonymization features
        • Matomo employs anonymization features to protect user identities while providing valuable insights, setting a standard for responsible data handling.
    • Purpose limitation :
      • Example : Proton Mail
        • Proton Mail strictly limits the use of user data to email-related purposes, showcasing the importance of purpose-driven data practices.
    • Dynamic content delivery : 
      • Example : LinkedIn
        • LinkedIn uses behavioural segmentation to dynamically deliver job recommendations, showcasing the potential for relevant content delivery.
    • Data security :
      • Example : Apple
        • Apple’s stringent data security measures protect user information, setting a high bar for safeguarding sensitive data.
    • Adherence to regulatory compliance : 
      • Example : Matomo’s regulatory compliance features
        • Matomo’s regulatory compliance features ensure that businesses using the platform adhere to data protection regulations, further promoting responsible data usage.

    Don’ts of behavioural segmentation :

    • Ignoring changing regulations
      • Example : Equifax
        • Equifax faced major repercussions for neglecting evolving regulations, resulting in a data breach that exposed the sensitive information of millions.
    • Sensitive attributes
      • Example : Twitter
        • Twitter faced criticism for allowing advertisers to target users based on sensitive attributes, sparking concerns about user privacy and data ethics.
    • Data sharing without consent
      • Example : Meta & Cambridge Analytica
        • The Cambridge Analytica scandal involving Meta (formerly Facebook) revealed the consequences of sharing user data without clear consent, leading to a breach of trust.
    • Lack of control
      • Example : Uber
        • Uber faced backlash for its poor data security practices and a lack of control over user data, resulting in a data breach and compromised user information.
    • Don’t be creepy with invasive personalisation
      • Example : Offer Moment
        • Offer Moment’s overly invasive personalisation tactics crossed ethical boundaries, unsettling users and eroding trust.

    These examples are valuable lessons, emphasising the importance of ethical and responsible behavioural segmentation practices to maintain user trust and regulatory compliance in an increasingly data-driven world.

    Continue the conversation

    Diving into customer behaviours, preferences and interactions empowers businesses to forge meaningful connections with their target audience through targeted marketing segmentation strategies. This approach drives growth and fosters exceptional customer experiences, as evident from the various common examples spanning diverse industries.

    In the realm of ethical behavioural segmentation and regulatory compliance, Matomo is a trusted partner. Committed to safeguarding user privacy and data integrity, our advanced web analytics solution empowers your business to harness the power of behavioral segmentation, all while upholding the highest standards of compliance with stringent privacy regulations.

    To gain deeper insight into your visitors and execute impactful marketing campaigns, explore how Matomo can elevate your efforts. Try Matomo free for 21-days, no credit card required. 

  • A pragmatic strategy to merge multiple video files

    19 juin 2021, par saurav

    I currently am working on recording a multiparty video conference which supports up to 6 participants. I am recording the conference using a media server and storing audio/video streams individually for every participant.

    


    Next, I need to merge those individual recordings into a single video file and upload it to a cloud storage like aws s3. For this I am considering 2 options, either Gstreamer or FFMPEG. I am leaning towards FFMPEG as I have used FFMPEG previously. I currently am playing with FFMPEG things like the hstack and vstack filters etc.

    


    Here is the FFMPEG command I recently used to join 2 webm videos of 2 mins 40sec and 1min 40sec to create a mp4 video file for upload. Both the videos are 1280x720 in this case but I have included the scale part because in real life scenario different participants joining with different cameras produces video files of different resolution which is a problem for the hstack/vstack filter. Therefore, to make the video resolutions of all participant consistent, I have included the scale property.

    


    ffmpeg -i 1.webm -i 2.webm -filter_complex "[0:v]scale=1280:720,setsar=1[l];[1:v]scale=1280:720,setsar=1[r];[l][r]hstack;[0][1]amix" output-1280x720.mp4


    


    Currently I am facing 2 issues with this command.

    


      

    1. The output mp4 file is very big, in this case 140Mb (approx) for a less than 3 minutes video.

      


    2. 


    3. How do I add delay to any video before starting to merge ?
      
Currently the videos are going out of sync if all the participants don't join at the same time which is highly unlikely to happen in a real world scenario.

      


    4. 


    


    Any pointer in the right direction will be highly appreciated.

    


    Here is a log sample from FFmpeg (or see the full log link) :

    


    ffmpeg version 4.2.4-1ubuntu0.1 Copyright (c) 2000-2020 the FFmpeg developers
  built with gcc 9 (Ubuntu 9.3.0-10ubuntu2)
  configuration: --prefix=/usr --extra-version=1ubuntu0.1 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --arch=amd64 --enable-gpl --disable-stripping --enable-avresample --disable-filter=resample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libcodec2 --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libjack --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librsvg --enable-librubberband --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-lv2 --enable-omx --enable-openal --enable-opencl --enable-opengl --enable-sdl2 --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-nvenc --enable-chromaprint --enable-frei0r --enable-libx264 --enable-shared
  libavutil      56. 31.100 / 56. 31.100
  libavcodec     58. 54.100 / 58. 54.100
  libavformat    58. 29.100 / 58. 29.100
  libavdevice    58.  8.100 / 58.  8.100
  libavfilter     7. 57.100 /  7. 57.100
  libavresample   4.  0.  0 /  4.  0.  0
  libswscale      5.  5.100 /  5.  5.100
  libswresample   3.  5.100 /  3.  5.100
  libpostproc    55.  5.100 / 55.  5.100
Input #0, matroska,webm, from '3.webm':
  Metadata:
    title           : FFmpeg
    ENCODER         : Lavf58.29.100
  Duration: 00:01:39.63, start: 0.000000, bitrate: 707 kb/s
    Stream #0:0: Video: vp8, yuv420p(tv, bt470bg/unknown/unknown, progressive), 1280x720, SAR 1:1 DAR 16:9, 1k tbr, 1k tbn, 1k tbc (default)
    Metadata:
      DURATION        : 00:01:39.618000000
    Stream #0:1: Audio: opus, 48000 Hz, stereo, fltp (default)
    Metadata:
      DURATION        : 00:01:39.629000000
Input #1, matroska,webm, from '4.webm':
  Metadata:
    title           : FFmpeg
    ENCODER         : Lavf58.29.100
  Duration: 00:02:39.07, start: 0.000000, bitrate: 708 kb/s
    Stream #1:0: Video: vp8, yuv420p(tv, bt470bg/unknown/unknown, progressive), 1280x720, SAR 1:1 DAR 16:9, 1k tbr, 1k tbn, 1k tbc (default)
    Metadata:
      DURATION        : 00:02:39.050000000
    Stream #1:1: Audio: opus, 48000 Hz, stereo, fltp (default)
    Metadata:
      DURATION        : 00:02:39.068000000
Stream mapping:
  Stream #0:0 (vp8) -> scale
  Stream #0:1 (opus) -> amix:input0
  Stream #1:0 (vp8) -> scale
  Stream #1:1 (opus) -> amix:input1
  hstack -> Stream #0:0 (libx264)
  amix -> Stream #0:1 (aac)
Press [q] to stop, [?] for help
[libx264 @ 0x562b4842a500] using SAR=1/1
[libx264 @ 0x562b4842a500] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2
[libx264 @ 0x562b4842a500] profile High, level 6.1
[libx264 @ 0x562b4842a500] 264 - core 155 r2917 0a84d98 - H.264/MPEG-4 AVC codec - Copyleft 2003-2018 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=18 lookahead_threads=3 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00
Output #0, mp4, to 'output-new.mp4':
  Metadata:
    title           : FFmpeg
    encoder         : Lavf58.29.100
    Stream #0:0: Video: h264 (libx264) (avc1 / 0x31637661), yuv420p(progressive), 2560x720 [SAR 1:1 DAR 32:9], q=-1--1, 1k fps, 16k tbn, 1k tbc (default)
    Metadata:
      encoder         : Lavc58.54.100 libx264
    Side data:
      cpb: bitrate max/min/avg: 0/0/0 buffer size: 0 vbv_delay: -1
    Stream #0:1: Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 128 kb/s (default)
    Metadata:
      encoder         : Lavc58.54.100 aac

frame=  129 fps=0.0 q=33.0 size=       0kB time=00:00:00.23 bitrate=   1.6kbits/s dup=123 drop=0 speed=0.44x    
frame=  257 fps=228 q=33.0 size=       0kB time=00:00:00.51 bitrate=   0.8kbits/s dup=243 drop=0 speed=0.455x    
frame=  379 fps=224 q=33.0 size=     256kB time=00:00:00.73 bitrate=2855.1kbits/s dup=358 drop=0 speed=0.434x    
frame=  497 fps=222 q=33.0 size=     256kB time=00:00:00.86 bitrate=2431.5kbits/s dup=469 drop=0 speed=0.386x    
 
...
More than 1000 frames duplicated
...
  
frame=158751 fps=196 q=33.0 size=  134656kB time=00:02:39.00 bitrate=6937.4kbits/s dup=151385 drop=0 speed=0.196x    
frame=158851 fps=196 q=33.0 size=  134912kB time=00:02:39.00 bitrate=6950.6kbits/s dup=151482 drop=0 speed=0.196x    
frame=158983 fps=196 q=33.0 size=  134912kB time=00:02:39.00 bitrate=6950.6kbits/s dup=151610 drop=0 speed=0.196x    
frame=159081 fps=196 q=-1.0 Lsize=  137197kB time=00:02:39.07 bitrate=7065.2kbits/s dup=151706 drop=0 speed=0.196x    

video:132693kB audio:2494kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 1.486001%

[libx264 @ 0x562b4842a500] frame I:637   Avg QP:17.73  size:123895
[libx264 @ 0x562b4842a500] frame P:40088 Avg QP:19.73  size:  1134
[libx264 @ 0x562b4842a500] frame B:118356 Avg QP:27.54  size:    97
[libx264 @ 0x562b4842a500] consecutive B-frames:  0.8%  0.0%  0.0% 99.2%
[libx264 @ 0x562b4842a500] mb I  I16..4: 11.1% 67.3% 21.6%
[libx264 @ 0x562b4842a500] mb P  I16..4:  0.1%  0.1%  0.0%  P16..4:  2.6%  0.4%  0.3%  0.0%  0.0%    skip:96.5%
[libx264 @ 0x562b4842a500] mb B  I16..4:  0.0%  0.0%  0.0%  B16..8:  0.7%  0.0%  0.0%  direct: 0.0%  skip:99.3%  L0:38.7% L1:61.3% BI: 0.0%
[libx264 @ 0x562b4842a500] 8x8 transform intra:66.8% inter:71.4%
[libx264 @ 0x562b4842a500] coded y,uvDC,uvAC intra: 81.8% 89.5% 72.3% inter: 0.2% 0.4% 0.0%
[libx264 @ 0x562b4842a500] i16 v,h,dc,p: 25% 21% 17% 37%
[libx264 @ 0x562b4842a500] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 33% 22% 12%  4%  5%  6%  6%  6%  6%
[libx264 @ 0x562b4842a500] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 42% 24%  6%  4%  5%  5%  6%  4%  4%
[libx264 @ 0x562b4842a500] i8c dc,h,v,p: 42% 24% 26%  9%
[libx264 @ 0x562b4842a500] Weighted P-Frames: Y:0.0% UV:0.0%
[libx264 @ 0x562b4842a500] ref P L0: 82.4% 11.5%  5.3%  0.8%
[libx264 @ 0x562b4842a500] ref B L0: 83.0% 16.9%  0.1%
[libx264 @ 0x562b4842a500] ref B L1: 94.9%  5.1%
[libx264 @ 0x562b4842a500] kb/s:6833.11
[aac @ 0x562b4842b540] Qavg: 239.393


    


  • ffmpeg codec error on audio file

    31 juillet 2013, par foosion

    I have some m4a files that will not play properly using the google music player app on my Android phone, although they play fine on most everything else. I thought the problem was the container and thought "ffmpeg -i bad.m4a -codec copy good.m4a" might help. However, when I run on the problem files, I get error messages. Running this command on non-problem files has not generated error messages.

    Please suggest ways to fix (other than re-encoding).

       [D:\temp\dl]ffmpeg -i "01 - The Day Begins.m4a" -codec copy day.m4a
    ffmpeg version N-55066-gc96b3ae Copyright (c) 2000-2013 the FFmpeg developers
     built on Jul 29 2013 18:05:45 with gcc 4.7.3 (GCC)
     configuration: --enable-gpl --enable-version3 --disable-w32threads --enable-av
    isynth --enable-bzlib --enable-fontconfig --enable-frei0r --enable-gnutls --enab
    le-iconv --enable-libass --enable-libbluray --enable-libcaca --enable-libfreetyp
    e --enable-libgsm --enable-libilbc --enable-libmodplug --enable-libmp3lame --ena
    ble-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-l
    ibopus --enable-librtmp --enable-libschroedinger --enable-libsoxr --enable-libsp
    eex --enable-libtheora --enable-libtwolame --enable-libvo-aacenc --enable-libvo-
    amrwbenc --enable-libvorbis --enable-libvpx --enable-libx264 --enable-libxavs --
    enable-libxvid --enable-zlib
     libavutil      52. 40.100 / 52. 40.100
     libavcodec     55. 19.100 / 55. 19.100
     libavformat    55. 12.102 / 55. 12.102
     libavdevice    55.  3.100 / 55.  3.100
     libavfilter     3. 82.100 /  3. 82.100
     libswscale      2.  4.100 /  2.  4.100
     libswresample   0. 17.103 /  0. 17.103
     libpostproc    52.  3.100 / 52.  3.100
    [mov,mp4,m4a,3gp,3g2,mj2 @ 00000000002da300] stream 0, timescale not set
    Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '01 - The Day Begins.m4a':
     Metadata:
       major_brand     : m4a
       minor_version   : 0
       compatible_brands: M4A mp4isom
       creation_time   : 2003-07-06 20:27:46
       track           : 1
       genre           : Rock
       title           : The Day Begins
       artist          : Moody Blues
       album           : Days of Future Passed
       date            : 1967
     Duration: 00:05:50.83, start: 0.000000, bitrate: 166 kb/s
       Stream #0:0(eng): Audio: aac (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 15
    9 kb/s
       Metadata:
         creation_time   : 2003-07-06 20:27:46
         handler_name    : Apple Sound Media Handler
       Stream #0:1(eng): Data: none (mp4s / 0x7334706D)
       Metadata:
         creation_time   : 2003-07-06 20:27:46
         handler_name    : Apple MPEG-4 Scene Media Handler
       Stream #0:2(eng): Data: none (mp4s / 0x7334706D)
       Metadata:
         creation_time   : 2003-07-06 20:27:46
         handler_name    : Apple MPEG-4 ODSM Media Handler
       Stream #0:3: Video: png, rgb24, 240x240 [SAR 2834:2834 DAR 1:1], 90k tbr, 90
    k tbn, 90k tbc
    [ipod @ 000000000031dd40] track 0: could not find tag, codec not currently suppo
    rted in container
    Output #0, ipod, to 'day.m4a':
     Metadata:
       major_brand     : m4a
       minor_version   : 0
       compatible_brands: M4A mp4isom
       date            : 1967
       track           : 1
       genre           : Rock
       title           : The Day Begins
       artist          : Moody Blues
       album           : Days of Future Passed
       encoder         : Lavf55.12.102
       Stream #0:0: Video: png, rgb24, 240x240 [SAR 2834:2834 DAR 1:1], q=2-31, 90k
    tbn, 90k tbc
       Stream #0:1(eng): Audio: aac (mp4a / 0x6134706D), 44100 Hz, stereo, 159 kb/s

       Metadata:
         creation_time   : 2003-07-06 20:27:46
         handler_name    : Apple Sound Media Handler
    Stream mapping:
     Stream #0:3 -> #0:0 (copy)
     Stream #0:0 -> #0:1 (copy)
    Could not write header for output file #0 (incorrect codec parameters ?): Error
    number -1 occurred