Recherche avancée

Médias (1)

Mot : - Tags -/belgique

Autres articles (58)

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Supporting all media types

    13 avril 2011, par

    Unlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)

Sur d’autres sites (6916)

  • FFMPEG : Create timestamp based on actual creation time

    2 juillet 2022, par Peder Wessel

    Desired outcome

    


    Add overlay with timestamp for each frame of a video based on the original creation time for the video. E.g. starting at 2022-03-26T15:51:49.000000Z and a second later in the video present 2022-03-26T15:51.50.000000Z

    


    Approach

    


    Creation_time stored in the file already, e.g. when running ffmpeg -i input.mov" it presents creation_time   : 2022-03-26T15:51:49.000000Z.

    


    Adding overlay with timestamp to video :
ffmpeg -i input.mov -filter_complex "drawtext=text='%{pts\:gmtime\:1507046400\:%d-%m-%Y %T}': x=100 : y=100: box=1" -c:a copy output.mp4

    


    Challenge/ help needed

    


    Need to replace the gmtime\:1507046400 with the actual creation_time. How does one do it ?

    


    Sources

    


    


  • Matomo to end support for Internet Explorer 11

    21 septembre 2021, par Matomo Core Team — Community

    A lot of the Matomo user interface is built on top of a programming framework called “Angular.js”. The support for this framework will end very soon, meaning we have to migrate the Matomo user interface to an alternative framework. The Matomo development team has chosen this new framework to be “Vue.js 3”.

    Unfortunately, Vue.js does not support Internet Explorer 11 (IE 11). Therefore, we have to drop the support for IE 11. Many other popular services like Microsoft and WordPress recently did the same. This is happening because IE 11 was released about 8 years ago and is now used by less than 0.5% of the internet. 

    When will this change happen ?

    Our next release (Matomo 4.5) will still support IE 11. It will show a notification in the user interface if you are using Internet Explorer to make you aware of this upcoming change. 

    When Matomo 4.6 is released around November 2021, then IE 11 will no longer be supported.

    What does “end support” mean ?

    The Matomo user interface will work less and less over time for people using IE 11 as a browser. While Matomo 4.6 might still mostly work with IE 11, once we migrate more of the user interface the functionality will stop working completely. It’s possible that even Matomo 4.6 will no longer be functional with IE 11 at all.

    What should I do now ?

    If you are impacted by this, then we strongly recommend that you switch to a more modern browser. Preferably a privacy-friendly browser like Mozilla Firefox or Brave. But any modern browser including Microsoft Edge, Safari and Google Chrome will work just fine.

    If you can’t use a different browser and you are using Matomo On-Premise, then you can install and configure this new plugin which lets you only receive Matomo core updates that are compatible with IE 11. This will prevent you from accidentally upgrading to a Matomo core release that doesn’t work with IE 11, and you can still receive critical security updates and bug fixes until February 2022.

    Will this affect the Matomo JavaScript tracker ?

    No, all visitors using IE 11 will still be tracked and Matomo tracker will support the same browsers as before. Meaning also some older versions of Internet Explorer are still supported.

    Have any questions about this ?

    Get in touch with us 

  • Understanding The Dreamcast GD-ROM Layout

    24 mars 2022, par Multimedia Mike — Sega Dreamcast

    I’m finally completing something I set out to comprehend over a decade ago. I wanted to understand how data is actually laid out on a Sega Dreamcast GD-ROM drive. I’m trying to remember why I even still care. There was something about how I wanted to make sure the contents of a set of Dreamcast demo discs was archived for study.


    Lot of 9 volumes of the Official Sega Dreamcast Magazine

    I eventually figured it out. Read on, if you are interested in the technical details. Or, if you would like to examine the fruits of this effort, check out the Dreamcast demo discs that I took apart and uploaded to the Internet Archive.

    If you care to read some geeky technical details of some of the artifacts on these sampler discs, check out this followup post on Dreamcast Finds.

    Motivation
    Why do I still care about this ? Well, see the original charter of this blog above. It’s mostly about studying multimedia formats, as well as the general operation of games and their non-multimedia data formats. It’s also something that has nagged at me ever since I extracted a bunch of Dreamcast discs years ago and tried to understand why the tracks were arranged the way they were, and how I could systematically split the files out of the filesystem. This turns out not to be as easy as it might sound, even if you can get past the obstacle of getting at the raw data.

    CD/CD-ROM Refresher
    As I laid out in my Grand Unified Theory of Compact Disc, every compact disc can be viewed conceptually as a string of sectors, where each sector is 2352 bytes long. The difference among the various CD types (audio CDs, various CD-ROM types) boils down to the format of contents of the 2352-byte sectors. For an audio CD, every sector’s 2352 bytes represents 1/75 of a second of CD-quality audio samples.

    Meanwhile, there are various sector layouts for different CD-ROM modes, useful for storing computer data. This post is most interested in “mode 1/form 1”, which uses 2048 of the 2352 bytes for data, while using the remaining bytes for error detection and correction codes. A filesystem (usually ISO-9660) is overlaid on these 2048-byte sectors in order to create data structures for organizing strings of sectors into files.

    A CD has between 1 and 99 tracks. A pure CD-ROM will have a single data track. Pure audio CDs tend to have numerous audio tracks, usually 1 per song. Mixed CDs are common. For software, this usually manifests as the first track being data and containing an ISO-9660 filesystem, followed by a series of audio tracks, sometimes for in-game music. For audio CDs, there is occasionally a data track at the end of the disc with some extra media types.

    GD-ROM Refresher
    The Dreamcast used optical discs called GD-ROMs, where the GD stands for “gigadisc”. These discs were designed to hold about 1 gigabyte of data, vs. the usual 650-700MB offered by standard CD solutions, while using the same laser unit as is used for CDs. I’m not sure how it achieved this exactly. I always assumed it was some sort of “double density” sector scheme. According to Wikipedia, the drive read the disc at a slower rate which allowed it to read more data (presumably the “pits” vs. “lands” which comprise the surface of an optical disc). This might be equivalent to my theory.

    The GD-ROM discs cannot be read in a standard optical drive. It is necessary to get custom software onto the Dreamcast which will ask the optical hardware to extract the sectors and exfiltrate them off of the unit somehow. There are numerous methods for this. Alternatively, just find rips that are increasingly plentiful around the internet. However, just because you might be able to find the data for a given disc does not mean that you can easily explore the contents.

    Typical Layout Patterns
    Going back to my study of the GD-ROM track layouts, 2 clear patterns emerge :

    All of the game data is packed into track 3 :


    GD-ROM Layout Type 1

    Track 3 has data, the last track has data, and the tracks in between contain standard CD audio :


    GD-ROM Layout Type 2

    Also, the disc is always, always 100% utilized.

    Track 1 always contains an ISO-9660 filesystem and can be read by any standard CD-ROM drive. And it usually has nothing interesting. Track 3 also contains what appears to be an ISO-9660 filesystem. However, if you have a rip of the track and try to mount the image with standard tools, it will not work. In the second layout, the data follows no obvious format.

    Cracking The Filesystem Code
    I figured out quite a few years ago that in the case of the consolidated data track 3, that’s simply a standard ISO-9660 filesystem that would work fine with standard ISO-9660 reading software… if the data track were located beginning at sector 45000. The filesystem data structures contain references to absolute sector numbers. Thus, if it were possible to modify some ISO-9660 software to assume the first sector is 45000, it ought to have no trouble interpreting the data.


    ISO-9660 In A Single Track

    How about the split data track format ? Actually, it works the same way. If all the data were sitting on its original disc, track 3 would have data structures pointing to strings of contiguous sectors (extents) in the final track, and those are the files.

    To express more succinctly : track 3 contains the filesystem root structure and the directory structures, while the final track contains the actual file data. How is the filesystem always 100% full ? Track 3 gets padded out with 0-sectors until the beginning of any audio sectors.


    ISO-9660 Spread Across 2 Tracks

    Why Lay Things Out Like This ?
    Why push the data as far out on the disc as possible ? A reasonable explanation for this would be for read performance. Compact discs operate on Constant Linear Velocity (CLV), vs. Constant Angular Velocity (CAV). The implication of this is that data on the outside of the disc is read faster than data on the inside. I once profiled this characteristic in order to prove it to myself, using both PC CD drives as well as a Dreamcast. By pushing the data to the outer sectors, graphical data gets loaded into RAM faster, and full motion videos, which require a certain minimum bitrate for a good experience, have a better guarantee that playback will be smooth.

    Implications For Repacking
    Once people figured out how to boot burned CDs in the Dreamcast, they had a new problem : Squeeze as much as 1 gigabyte down to around 650 megabytes at the most. It looks like the most straightforward strategy was to simply rework the filesystem to remove the often enormous amount of empty space in track 3.

    My understanding is that another major strategy is to re-encode certain large assets. Full motion video (FMV) assets are a good target here since the prevailing FMV middleware format used on Sega Dreamcast games was Sofdec, which is basically just MPEG-1 video. There is ample opportunity to transcode these files to lower bitrate settings to squeeze some bits (and a lot of visual quality) out of them.

    Further, if you don’t really care about the audio tracks, you could just replace them with brief spurts of silence.

    Making A Tool
    So I could make a tool that would process these collections of files representing a disc. I could also adapt it for various forms that a Dreamcast rip might take (I have found at least 3 so far). I could eventually expand it to handle lots of other disc formats (you know, something like Aaru does these days). And that would have been my modus operandi perhaps 10 or more years ago. And of course, the ambitious tool would have never seen daylight as I got distracted by other ideas.

    I wanted to get a solution up and running as quickly as possible this time. Here was my initial brainstorm : assemble all the tracks into a single, large disc while pretending the audio tracks consist of 2048-byte sectors. In doing so, I ought to be able to use fuseiso to mount the giant image, with a modification to look for the starting sector at a somewhat nonstandard location.

    To achieve the first part I wrote a quick Python script that processed the contents of a GDI file, which was stored alongside the ISO (data) and RAW (audio) track track rips from when I extracted the disc. The GDI is a very matter-of-fact listing of the tracks and their properties, e.g. :

    5
    1 0 4 2048 track01.iso 0
    2 721 0 2352 track02.raw 0
    3 45000 4 2048 track03.iso 0
    4 338449 0 2352 track04.raw 0
    5 349096 4 2048 track05.iso 0
    

    track number / starting sector / track type (4=data, 0=audio) / bytes per sector / filename / ??

    The script skips the first 2 filenames, instead writing 45000 zero sectors in order to simulate the CD-compatible area. Then, for each file, if it’s an ISO, append the data to the final data file ; if it’s audio, compute the number of sectors occupied, and then append that number of 2048-byte zero sectors to the final data file.

    Finally, to interpret the filesystem, I used an old tool that I’ve relied upon for a long time– fuseiso. This is a program that leverages Filesystem in Userspace (FUSE) to mount ISO-9660 filesystems as part of the local filesystem, without needing root privileges. The original source hasn’t been updated for 15 years, but I found a repo that attempts to modernize it slightly. I forked a version which fixes a few build issues.

    Anyway, I just had to update a table to ask it to start looking for the root ISO-9660 filesystem at a different location than normal. Suddenly, after so many years, I was able to freely browse a GD-ROM filesystem directly under Linux !

    Conclusion And Next Steps
    I had to hack the fuseiso3 tool a bit in order to make this work. I don’t think it’s especially valuable to make sure anyone can run with the same modifications since the tool assumes that a GD-ROM rip has been processed through the exact pipeline I described above.

    I have uploaded all of the North American Dreamcast demo discs to archive.org. See this post for a more granular breakdown of what this entails. In the course of this exercise, I also found some European demo discs that could use the same extraction.

    What else ? Should I perform the same extraction experiment for all known Dreamcast games ? Would anyone care ? Maybe if there’s a demand for it.

    Here is a followup on the interesting and weird things I have found on these discs so far.

    The post Understanding The Dreamcast GD-ROM Layout first appeared on Breaking Eggs And Making Omelettes.