Recherche avancée

Médias (1)

Mot : - Tags -/copyleft

Autres articles (63)

  • Submit bugs and patches

    13 avril 2011

    Unfortunately a software is never perfect.
    If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
    If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
    You may also (...)

  • Mise à jour de la version 0.1 vers 0.2

    24 juin 2013, par

    Explications des différents changements notables lors du passage de la version 0.1 de MediaSPIP à la version 0.3. Quelles sont les nouveautés
    Au niveau des dépendances logicielles Utilisation des dernières versions de FFMpeg (>= v1.2.1) ; Installation des dépendances pour Smush ; Installation de MediaInfo et FFprobe pour la récupération des métadonnées ; On n’utilise plus ffmpeg2theora ; On n’installe plus flvtool2 au profit de flvtool++ ; On n’installe plus ffmpeg-php qui n’est plus maintenu au (...)

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

Sur d’autres sites (8267)

  • TypeError : 'function' object is not subscriptable Python with ffmpeg

    25 novembre 2019, par S1mple
    clips = []

    def clipFinder(CurrentDir, fileType):
       clips.clear()
       for r,d,f in os.walk(CurrentDir):
           for file in f:
               if fileType in file:
                   clips.append(r+file)
       random.shuffle(clips)

    def removeVods(r):
       for f in clips:
           if 'vod' in clips:
               os.remove(r+f)

    def clipString():
       string = 'intermediate'
       clipList = []
       clipNum = 1
       for f in clips:
           clipList.append(string+str(clipNum)+'.ts'+'|')
           clipNum+=1
       string1 = ''.join(clipList)
       string2 = string1[0:len(string1)-1]
       return string2

    def concatFiles():
       clipFinder('***', '.mp4')
       removeVods('***')
       i = 0
       intermediates = []
       for f in clips:
           subprocess.call(['***', '-i', clips[i], '-c', 'copy', '-bsf:v', 'h264_mp4toannexb', '-f', 'mpegts', 'intermediate'+ str(i+1) +'.ts'])
           i += 1
       clipsLength = len(clips)
       subprocess.call['***', '-i', '"concat:' + clipString() + '"', '-c', 'copy', '-bsf:a
       aac_adtstoasc', 'output.mp4']

    I am trying to make a clip concatenator, but the last subprocess call won’t run and gives me the error shown in the question.

    Problematic code :

    subprocess.call(['***', '-i', '"concat:' + clipString() + '"', '-c', 'copy', '-bsf:a aac_adtstoasc', 'output.mp4'])

    all places with * were paths such as :
    /davidscomputer/bin/ffmpeg/

  • WARN : Tried to pass invalid video frame, marking as broken : Your frame has data type int64, but we require uint8

    5 septembre 2019, par Tavo Diaz

    I am doing some Udemy AI courses and came across with one that "teaches" a bidimensional cheetah how to walk. I was doing the exercises on my computer, but it takes too much time. I decided to use Google Cloud to run the code and see the results some hours after. Nevertheless, when I run the code I get the following error " WARN : Tried to pass
    invalid video frame, marking as broken : Your frame has data type int64, but we require uint8 (i.e. RGB values from 0-255)".

    After the code is executed, I see into the folder and I don’t see any videos (just the meta info).

    Some more info (if it helps) :
    I have a 1 CPU (4g), SSD Ubuntu 16.04 LTS

    I have not tried anything yet to solve it because I don´t know what to try. Im looking for solutions on the web, but nothing I could try.

    This is the code

    import os
    import numpy as np
    import gym
    from gym import wrappers
    import pybullet_envs


    class Hp():
       def __init__(self):
           self.nb_steps = 1000
           self.episode_lenght =   1000
           self.learning_rate = 0.02
           self.nb_directions = 32
           self.nb_best_directions = 32
           assert self.nb_best_directions <= self.nb_directions
           self.noise = 0.03
           self.seed = 1
           self.env_name = 'HalfCheetahBulletEnv-v0'


    class Normalizer():
       def __init__(self, nb_inputs):
           self.n = np.zeros(nb_inputs)
           self.mean = np.zeros(nb_inputs)
           self.mean_diff = np.zeros(nb_inputs)
           self.var = np.zeros(nb_inputs)

       def observe(self, x):
           self.n += 1.
           last_mean = self.mean.copy()
           self.mean += (x - self.mean) / self.n
           #abajo es el online numerator update
           self.mean_diff += (x - last_mean) * (x - self.mean)
           #abajo online computation de la varianza
           self.var = (self.mean_diff / self.n).clip(min = 1e-2)  

       def normalize(self, inputs):
           obs_mean = self.mean
           obs_std = np.sqrt(self.var)
           return (inputs - obs_mean) / obs_std

    class Policy():
       def __init__(self, input_size, output_size):
           self.theta = np.zeros((output_size, input_size))

       def evaluate(self, input, delta = None, direction = None):
           if direction is None:
               return self.theta.dot(input)
           elif direction == 'positive':
               return (self.theta + hp.noise * delta).dot(input)
           else:
               return (self.theta - hp.noise * delta).dot(input)

       def sample_deltas(self):
           return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]

       def update (self, rollouts, sigma_r):
           step = np.zeros(self.theta.shape)
           for r_pos, r_neg, d in rollouts:
               step += (r_pos - r_neg) * d
           self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step


    def explore(env, normalizer, policy, direction = None, delta = None):
       state = env.reset()
       done = False
       num_plays = 0.
       #abajo puede ser promedio de las rewards
       sum_rewards = 0
       while not done and num_plays < hp.episode_lenght:
           normalizer.observe(state)
           state = normalizer.normalize(state)
           action = policy.evaluate(state, delta, direction)
           state, reward, done, _ = env.step(action)
           reward = max(min(reward, 1), -1)
           #abajo sería poner un promedio
           sum_rewards += reward
           num_plays += 1
       return sum_rewards

    def train (env, policy, normalizer, hp):
       for step in range(hp.nb_steps):
           #iniciar las perturbaciones deltas y los rewards positivos/negativos
           deltas = policy.sample_deltas()
           positive_rewards = [0] * hp.nb_directions
           negative_rewards = [0] * hp.nb_directions
           #sacar las rewards en la dirección positiva
           for k in range(hp.nb_directions):
               positive_rewards[k] = explore(env, normalizer, policy, direction = 'positive', delta = deltas[k])
           #sacar las rewards en dirección negativo
           for k in range(hp.nb_directions):
               negative_rewards[k] = explore(env, normalizer, policy, direction = 'negative', delta = deltas[k])
           #sacar todas las rewards para sacar la desvest
           all_rewards = np.array(positive_rewards + negative_rewards)
           sigma_r = all_rewards.std()
           #acomodar los rollauts por el max (r_pos, r_neg) y seleccionar la mejor dirección
           scores = {k:max(r_pos, r_neg) for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
           order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
           rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
           #actualizar policy
           policy.update (rollouts, sigma_r)
           #poner el final reward del policy luego del update
           reward_evaluation = explore (env, normalizer, policy)
           print('Paso: ', step, 'Lejania: ', reward_evaluation)

    def mkdir(base, name):
       path = os.path.join(base, name)
       if not os.path.exists(path):
           os.makedirs(path)
       return path
    work_dir = mkdir('exp', 'brs')
    monitor_dir = mkdir(work_dir, 'monitor')

    hp = Hp()
    np.random.seed(hp.seed)
    env = gym.make(hp.env_name)
    env = wrappers.Monitor(env, monitor_dir, force = True)
    nb_inputs = env.observation_space.shape[0]
    nb_outputs = env.action_space.shape[0]
    policy = Policy(nb_inputs, nb_outputs)
    normalizer = Normalizer(nb_inputs)
    train(env, policy, normalizer, hp)
  • Concatenate list of streams with ffmpeg

    16 novembre 2019, par oioioi

    I’d like to write python code, automatically rearranging the scenes of a video. How do I use ffmpeg-python to concatenate a list of n streams/scenes ? What is the easiest way to merge those scenes with their audio counterpart ?
    Unfortunately, I couldn’t figure out how to do it properly.

    The status quo :

    import os

    import scenedetect
    from scenedetect.video_manager import VideoManager
    from scenedetect.scene_manager import SceneManager
    from scenedetect.frame_timecode import FrameTimecode
    from scenedetect.stats_manager import StatsManager
    from scenedetect.detectors import ContentDetector

    import ffmpeg

    STATS_FILE_PATH = 'stats.csv'

    def main():

       for root, dirs, files in os.walk('material'):
           for file in files:
               file = os.path.join(root, file)
               print(file)
               video_manager = VideoManager([file])
               stats_manager = StatsManager()
               scene_manager = SceneManager(stats_manager)
               scene_manager.add_detector(ContentDetector())
               base_timecode = video_manager.get_base_timecode()
               end_timecode = video_manager.get_duration()

               start_time = base_timecode
               end_time = base_timecode + 100.0
               #end_time = end_timecode[2]

               video_manager.set_duration(start_time=start_time, end_time=end_time)
               video_manager.set_downscale_factor()
               video_manager.start()
               scene_manager.detect_scenes(frame_source=video_manager)

               scene_list = scene_manager.get_scene_list(base_timecode)

               print('List of scenes obtained:')
               for i, scene in enumerate(scene_list):
                   print('    Scene %2d: Start %s / Frame %d, End %s / Frame %d' % (
                       i+1,
                       scene[0].get_timecode(), scene[0].get_frames(),
                       scene[1].get_timecode(), scene[1].get_frames(),))

                   start = scene[0].get_frames()
                   end = scene[1].get_frames()

                   print(start)
                   print(end)

                   (
                       ffmpeg
                       .input(file)
                       .trim(start_frame=start, end_frame=end)
                       .setpts ('PTS-STARTPTS')
                       .output('scene %d.mp4' % (i+1))
                       .run()
                   )

               if stats_manager.is_save_required():
                   with open(STATS_FILE_PATH, 'w') as stats_file:
                       stats_manager.save_to_csv(stats_file, base_timecode)

    if __name__ == "__main__":
       main()