Recherche avancée

Médias (2)

Mot : - Tags -/map

Autres articles (56)

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • Submit bugs and patches

    13 avril 2011

    Unfortunately a software is never perfect.
    If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
    If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
    You may also (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

Sur d’autres sites (8645)

  • 10 Customer Segments Examples and Their Benefits

    9 mai 2024, par Erin

    Now that companies can segment buyers, the days of mass marketing are behind us. Customer segmentation offers various benefits for marketing, content creation, sales, analytics teams and more. Without customer segmentation, your personalised marketing efforts may fall flat. 

    According to the Twilio 2023 state of personalisation report, 69% of business leaders have increased their investment in personalisation. There’s a key reason for this — customer retention and loyalty directly benefit from personalisation. In fact, 62% of businesses have cited improved customer retention due to personalisation efforts. The numbers don’t lie. 

    Keep reading to learn how customer segments can help you fine-tune your personalised marketing campaigns. This article will give you a better understanding of customer segmentation and real-world customer segment examples. You’ll leave with the knowledge to empower your marketing strategies with effective customer segmentation. 

    What are customer segments ?

    Customer segments are distinct groups of people or organisations with similar characteristics, needs and behaviours. Like different species of plants in a garden, each customer segment has specific needs and care requirements. Customer segments are useful for tailoring personalised marketing campaigns for specific groups.

    Personalised marketing has been shown to have significant benefits — with 56% of consumers saying that a personalised experience would make them become repeat buyers

    Successful marketing teams typically focus on these types of customer segmentation :

    A chart with icons representing the different customer segmentation categories
    1. Geographic segmentation : groups buyers based on their physical location — country, city, region or climate — and language.
    2. Purchase history segmentation : categorises buyers based on their purchasing habits — how often they make purchases — and allows brands to distinguish between frequent, occasional and one-time buyers. 
    3. Product-based segmentation : groups buyers according to the products they prefer or end up purchasing. 
    4. Customer lifecycle segmentation : segments buyers based on where they are in the customer journey. Examples include new, repeat and lapsed buyers. This segmentation category is also useful for understanding the behaviour of loyal buyers and those at risk of churning. 
    5. Technographic segmentation : focuses on buyers’ technology preferences, including device type, browser type, and operating system. 
    6. Channel preference segmentation : helps us understand why buyers prefer to purchase via specific channels — whether online channels, physical stores or a combination of both. 
    7. Value-based segmentation : categorises buyers based on their average purchase value and sensitivity to pricing, for example. This type of segmentation can provide insights into the behaviours of price-conscious buyers and those willing to pay premium prices. 

    Customer segmentation vs. market segmentation

    Customer segmentation and market segmentation are related concepts, but they refer to different aspects of the segmentation process in marketing. 

    Market segmentation is the broader process of dividing the overall market into homogeneous groups. Market segmentation helps marketers identify different groups based on their characteristics or needs. These market segments make it easier for businesses to connect with new buyers by offering relevant products or new features. 

    On the other hand, customer segmentation is used to help you dig deep into the behaviour and preferences of your current customer base. Marketers use customer segmentation insights to create buyer personas. Buyer personas are essential for ensuring your personalised marketing efforts are relevant to the target audience. 

    10 customer segments examples

    Now that you better understand different customer segmentation categories, we’ll provide real-world examples of how customer segmentation can be applied. You’ll be able to draw a direct connection between the segmentation category or categories each example falls under.

    One thing to note is that you’ll want to consider privacy and compliance when you are considering collecting and analysing types of data such as gender, age, income level, profession or personal interests. Instead, you can focus on these privacy-friendly, ethical customer segmentation types :

    1. Geographic location (category : geographic segmentation)

    The North Face is an outdoor apparel and equipment company that relies on geographic segmentation to tailor its products toward buyers in specific regions and climates. 

    For instance, they’ll send targeted advertisements for insulated jackets and snow gear to buyers in colder climates. For folks in seasonal climates, The North Face may send personalised ads for snow gear in winter and ads for hiking or swimming gear in summer. 

    The North Face could also use geographic segmentation to determine buyers’ needs based on location. They can use this information to send targeted ads to specific customer segments during peak ski months to maximise profits.

    2. Preferred language (category : geographic segmentation)

    Your marketing approach will likely differ based on where your customers are and the language they speak. So, with that in mind, language may be another crucial variable you can introduce when identifying your target customers. 

    Language-based segmentation becomes even more important when one of your main business objectives is to expand into new markets and target international customers — especially now that global reach is made possible through digital channels. 

    Coca-Cola’s “Share a Coke” is a multi-national campaign with personalised cans and bottles featuring popular names from countries around the globe. It’s just one example of targeting customers based on language.

    3. Repeat users and loyal customers (category : customer lifecycle segmentation)

    Sephora, a large beauty supply company, is well-known for its Beauty Insider loyalty program. 

    It segments customers based on their purchase history and preferences and rewards their loyalty with gifts, discounts, exclusive offers and free samples. And since customers receive personalised product recommendations and other perks, it incentivises them to remain members of the Beauty Insider program — adding a boost to customer loyalty.

    By creating a memorable customer experience for this segment of their customer base, staying on top of beauty trends and listening to feedback, Sephora is able to keep buyers coming back.

    All customers on the left and their respective segments on the right

    4. New customers (category : customer lifecycle segmentation)

    Subscription services use customer lifecycle segmentation to offer special promotions and trials for new customers. 

    HBO Max is a great example of a real company that excels at this strategy : 

    They offer 40% savings on an annual ad-free plan, which targets new customers who may be apprehensive about the added monthly cost of a recurring subscription.

    This marketing strategy prioritises fostering long-term customer relationships with new buyers to avoid high churn rates. 

    5. Cart abandonment (category : purchase history segmentation)

    With a rate of 85% among US-based mobile users, cart abandonment is a huge issue for ecommerce businesses. One way to deal with this is to segment inactive customers and cart abandoners — those who showed interest by adding products to their cart but haven’t converted yet — and send targeted emails to remind them about their abandoned carts.

    E-commerce companies like Ipsy, for example, track users who have added items to their cart but haven’t followed through on the purchase. The company’s messaging often contains incentives — like free shipping or a limited-time discount — to encourage passive users to return to their carts. 

    Research has found that cart abandonment emails with a coupon code have a high 44.37% average open rate. 

    6. Website activity (category : technographic segmentation)

    It’s also possible to segment customers based on website activity. Now, keep in mind that this is a relatively broad approach ; it covers every interaction that may occur while the customer is browsing your website. As such, it leaves room for many different types of segmentation. 

    For instance, you can segment your audience based on the pages they visited, the elements they interacted with — like CTAs and forms — how long they stayed on each page and whether they added products to their cart. 

    Matomo’s Event Tracking can provide additional context to each website visit and tell you more about the specific interactions that occur, making it particularly useful for segmenting customers based on how they spend their time on your website. 

    Try Matomo for Free

    Get the web insights you need, while respecting user privacy.

    No credit card required

    Amazon segments its customers based on browsing behaviour — recently viewed products and categories, among other things — which, in turn, allows them to improve the customer’s experience and drive sales.

    7. Traffic source (category : channel segmentation) 

    You can also segment your audience based on traffic sources. For example, you can determine if your website visitors arrived through Google and other search engines, email newsletters, social media platforms or referrals. 

    In other words, you’ll create specific audience segments based on the original source. Matomo’s Acquisition feature can provide insights into five different types of traffic sources — search engines, social media, external websites, direct traffic and campaigns — to help you understand how users enter your website.

    You may find that most visitors arrive at your website through social media ads or predominantly discover your brand through search engines. Either way, by learning where they’re coming from, you’ll be able to determine which conversion paths you should prioritise and optimise further. 

    8. Device type (category : technographic segmentation)

    Device type is customer segmentation based on the devices that potential customers may use to access your website and view your content. 

    It’s worth noting that, on a global level, most people (96%) use mobile devices — primarily smartphones — for internet access. So, there’s a high chance that most of your website visitors are coming from mobile devices, too. 

    However, it’s best not to assume anything. Matomo can detect the operating system and the type of device — desktop, mobile device, tablet, console or TV, for example. 

    By introducing the device type variable into your customer segmentation efforts, you’ll be able to determine if there’s a preference for mobile or desktop devices. In return, you’ll have a better idea of how to optimise your website — and whether you should consider developing an app to meet the needs of mobile users.

    Try Matomo for Free

    Get the web insights you need, while respecting user privacy.

    No credit card required

    9. Browser type (category : technographic segmentation)

    Besides devices, another type of segmentation that belongs to the technographic category and can provide valuable insights is browser-related. In this case, you’re tracking the internet browser your customers use. 

    Many browser types are available — including Google Chrome, Microsoft Edge, Safari, Firefox and Brave — and each may display your website and other content differently. 

    So, keeping track of your customers’ preferred choices is important. Otherwise, you won’t be able to fully understand their online experience — or ensure that these browsers are displaying your content properly. 

    Browser type in Matomo

    10. Ecommerce activity (category : purchase history, value based, channel or product based segmentation) 

    Similar to website activity, looking at ecommerce activity can tell your sales teams more about which pages the customer has seen and how they have interacted with them. 

    With Matomo’s Ecommerce Tracking, you’ll be able to keep an eye on customers’ on-site behaviours, conversion rates, cart abandonment, purchased products and transaction data — including total revenue and average order value.

    Considering that the focus is on sales channels — such as your online store — this approach to customer segmentation can help you improve the sales experience and increase profitability. 

    Start implementing these customer segments examples

    With ever-evolving demographics and rapid technological advancements, customer segmentation is increasingly complex. The tips and real-world examples in this article break down and simplify customer segmentation so that you can adapt to your customer base. 

    Customer segmentation lays the groundwork for your personalised marketing campaigns to take off. By understanding your users better, you can effectively tailor each campaign to different segments. 

    If you’re ready to see how Matomo can elevate your personalised marketing campaigns, try it for free for 21 days. No credit card required.

  • Using PyAV to encode mono audio to file, params match docs, but still causes Errno 22

    20 février 2023, par andrew8088

    While trying to use PyAV to encode live mono audio from a microphone to a compressed audio stream (using mp2 or flac as encoder), the program kept raising an exception ValueError: [Errno 22] Invalid argument.

    


    To remove the live microphone source as a cause of the problem, and to make the problematic code easier for others to run/test, I have removed the mic source and now just generate a pure tone as a sequence of input buffers.

    


    All attempts to figure out the missing or mismatched or incorrect argument have just resulted in seeing documentation and examples that are the same as my code.

    


    I would like to know from someone who has used PyAV successfully for mono audio what the correct method and parameters are for encoding mono frames into the mono stream.

    


    The package used is av 10.0.0 installed with
pip3 install av --no-binary av
so it uses my package-manager provided ffmpeg library, which is version 4.2.7.

    


    The problematic python code is :

    


    #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Recreating an error 22 when encoding sound with PyAV.

Created on Sun Feb 19 08:10:29 2023
@author: andrewm
"""
import typing
import sys
import math
import fractions

import av
from av import AudioFrame

""" Ensure some PyAudio constants are still defined without changing 
    the PyAudio recording callback function and without depending 
    on PyAudio simply for reproducing the PyAV bug [Errno 22] thrown in 
    File "av/filter/context.pyx", line 89, in av.filter.context.FilterContext.push
"""
class PA_Stub():
    paContinue = True
    paComplete= False

pyaudio = PA_Stub()


"""Generate pure tone at given frequency with amplitude 0...1.0 at 
   sampling frewuency fs and beginning at phase offset 'phase'.
   Returns the new phase after the sinusoid has cycled over the 
   sampling window length.
"""
def generate_tone(
        freq:int, phase:float, amp:float, fs, samp_fmt, buffer:bytearray
) -> float:
    assert samp_fmt == "s16", "Only s16 supported atm"
    samp_size_bytes = 2
    n_samples = int(len(buffer)/samp_size_bytes)
    window = [int(0) for i in range(n_samples)]
    theta = phase
    phase_inc = 2*math.pi * freq / fs
    for i in range(n_samples):
        v = amp * math.sin(theta)
        theta += phase_inc
        s = int((2**15-1)*v)
        window[i] = s
    for sample_i in range(len(window)):
        byte_i = sample_i * samp_size_bytes
        enc = window[sample_i].to_bytes(
                2, byteorder=sys.byteorder, signed=True
        )
        buffer[byte_i] = enc[0]
        buffer[byte_i+1] = enc[1]
    return theta


channels = 1
fs = 44100  # Record at 44100 samples per second
fft_size_samps = 256
chunk_samps = fft_size_samps * 10  # Record in chunks that are multiples of fft windows.

# print(f"fft_size_samps={fft_size_samps}\nchunk_samps={chunk_samps}")

seconds = 3.0
out_filename = "testoutput.wav"

# Store data in chunks for 3 seconds
sample_limit = int(fs * seconds)
sample_len = 0
frames = []  # Initialize array to store frames

ffmpeg_codec_name = 'mp2'  # flac, mp3, or libvorbis make same error.

sample_size_bytes = 2
buffer = bytearray(int(chunk_samps*sample_size_bytes))
chunkperiod = chunk_samps / fs
total_chunks = int(math.ceil(seconds / chunkperiod))
phase = 0.0

### uncomment if you want to see the synthetic data being used as a mic input.
# with open("test.raw","wb") as raw_out:
#     for ci in range(total_chunks):
#         phase = generate_tone(2600, phase, 0.8, fs, "s16", buffer)
#         raw_out.write(buffer)
# print("finished gen test")
# sys.exit(0)
# #---- 

# Using mp2 or mkv as the container format gets the same error.
with av.open(out_filename+'.mp2', "w", format="mp2") as output_con:
    output_con.metadata["title"] = "My title"
    output_con.metadata["key"] = "value"
    channel_layout = "mono"
    sample_fmt = "s16p"

    ostream = output_con.add_stream(ffmpeg_codec_name, fs, layout=channel_layout)
    assert ostream is not None, "No stream!"
    cctx = ostream.codec_context
    cctx.sample_rate = fs
    cctx.time_base = fractions.Fraction(numerator=1,denominator=fs)
    cctx.format = sample_fmt
    cctx.channels = channels
    cctx.layout = channel_layout
    print(cctx, f"layout#{cctx.channel_layout}")
    
    # Define PyAudio-style callback for recording plus PyAV transcoding.
    def rec_callback(in_data, frame_count, time_info, status):
        global sample_len
        global ostream
        frames.append(in_data)
        nsamples = int(len(in_data) / (channels*sample_size_bytes))
        
        frame = AudioFrame(format=sample_fmt, layout=channel_layout, samples=nsamples)
        frame.sample_rate = fs
        frame.time_base = fractions.Fraction(numerator=1,denominator=fs)
        frame.pts = sample_len
        frame.planes[0].update(in_data)
        print(frame, len(in_data))
        
        for out_packet in ostream.encode(frame):
            output_con.mux(out_packet)
        for out_packet in ostream.encode(None):
            output_con.mux(out_packet)
        
        sample_len += nsamples
        retflag = pyaudio.paContinue if sample_lencode>

    


    If you uncomment the RAW output part you will find the generated data can be imported as PCM s16 Mono 44100Hz into Audacity and plays the expected tone, so the generated audio data does not seem to be the problem.

    


    The normal program console output up until the exception is :

    


    mp2 at 0x7f8e38202cf0> layout#4
Beginning
 5120
. 5120


    


    The stack trace is :

    


    Traceback (most recent call last):&#xA;&#xA;  File "Dev/multichan_recording/av_encode.py", line 147, in <module>&#xA;    ret_data, ret_flag = rec_callback(buffer, ci, {}, 1)&#xA;&#xA;  File "Dev/multichan_recording/av_encode.py", line 121, in rec_callback&#xA;    for out_packet in ostream.encode(frame):&#xA;&#xA;  File "av/stream.pyx", line 153, in av.stream.Stream.encode&#xA;&#xA;  File "av/codec/context.pyx", line 484, in av.codec.context.CodecContext.encode&#xA;&#xA;  File "av/audio/codeccontext.pyx", line 42, in av.audio.codeccontext.AudioCodecContext._prepare_frames_for_encode&#xA;&#xA;  File "av/audio/resampler.pyx", line 101, in av.audio.resampler.AudioResampler.resample&#xA;&#xA;  File "av/filter/graph.pyx", line 211, in av.filter.graph.Graph.push&#xA;&#xA;  File "av/filter/context.pyx", line 89, in av.filter.context.FilterContext.push&#xA;&#xA;  File "av/error.pyx", line 336, in av.error.err_check&#xA;&#xA;ValueError: [Errno 22] Invalid argument&#xA;&#xA;</module>

    &#xA;

    edit : It's interesting that the error happens on the 2nd AudioFrame, as apparently the first one was encoded okay, because they are given the same attribute values aside from the Presentation Time Stamp (pts), but leaving this out and letting PyAV/ffmpeg generate the PTS by itself does not fix the error, so an incorrect PTS does not seem the cause.

    &#xA;

    After a brief glance in av/filter/context.pyx the exception must come from a bad return value from res = lib.av_buffersrc_write_frame(self.ptr, frame.ptr)
    &#xA;Trying to dig into av_buffersrc_write_frame from the ffmpeg source it is not clear what could be causing this error. The only obvious one is a mismatch between channel layouts, but my code is setting the layout the same in the Stream and the Frame. That problem had been found by an old question pyav - cannot save stream as mono and their answer (that one parameter required is undocumented) is the only reason the code now has the layout='mono' argument when making the stream.

    &#xA;

    The program output shows layout #4 is being used, and from https://github.com/FFmpeg/FFmpeg/blob/release/4.2/libavutil/channel_layout.h you can see this is the value for symbol AV_CH_FRONT_CENTER which is the only channel in the MONO layout.

    &#xA;

    The mismatch is surely some other object property or an undocumented parameter requirement.

    &#xA;

    How do you encode mono audio to a compressed stream with PyAV ?

    &#xA;

  • VideoWriter Doesn't work using openCV, ubuntu, Qt

    25 janvier 2023, par underflow223

    My code :

    &#xA;

    cv::VideoWriter(&#xA;  strFile.toStdString(),&#xA;  cv::VideoWriter::fourcc(&#x27;m&#x27;,&#x27;p&#x27;,&#x27;4&#x27;,&#x27;v&#x27;),&#xA;  nfps,&#xA;  cv::Size(1920/nresize, 1080/nresize)&#xA;);&#xA;

    &#xA;

    Error message :

    &#xA;

    [mpeg4_v4l2m2m @ 0x7f50a43c50] arm_release_ver of this libmali is &#x27;g6p0-01eac0&#x27;, rk_so_ver is &#x27;7&#x27;.&#xA;Could not find a valid device&#xA;[mpeg4_v4l2m2m @ 0x7f50a43c50] can&#x27;t configure encoder&#xA;

    &#xA;

    If I use MJPG codec, it works fine thow.

    &#xA;

    This is OPENCV configure info :

    &#xA;

    -- General configuration for OpenCV 4.6.0 =====================================&#xA;--   Version control:               unknown&#xA;-- &#xA;--   Extra modules:&#xA;--     Location (extra):            /home/firefly/Downloads/opencv_contrib-4.6.0/modules&#xA;--     Version control (extra):     unknown&#xA;-- &#xA;--   Platform:&#xA;--     Timestamp:                   2023-01-19T02:11:26Z&#xA;--     Host:                        Linux 5.10.110 aarch64&#xA;--     CMake:                       3.16.3&#xA;--     CMake generator:             Unix Makefiles&#xA;--     CMake build tool:            /usr/bin/make&#xA;--     Configuration:               Release&#xA;-- &#xA;--   CPU/HW features:&#xA;--     Baseline:                    NEON FP16&#xA;-- &#xA;--   C/C&#x2B;&#x2B;:&#xA;--     Built as dynamic libs?:      YES&#xA;--     C&#x2B;&#x2B; standard:                11&#xA;--     C&#x2B;&#x2B; Compiler:                /usr/bin/c&#x2B;&#x2B;  (ver 9.4.0)&#xA;--     C&#x2B;&#x2B; flags (Release):         -fsigned-char -W -Wall -Wreturn-type -Wnon-virtual-dtor -Waddress -Wsequence-point -Wformat -Wformat-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Wsuggest-override -Wno-delete-non-virtual-dtor -Wno-comment -Wimplicit-fallthrough=3 -Wno-strict-overflow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -fvisibility-inlines-hidden -O3 -DNDEBUG  -DNDEBUG&#xA;--     C&#x2B;&#x2B; flags (Debug):           -fsigned-char -W -Wall -Wreturn-type -Wnon-virtual-dtor -Waddress -Wsequence-point -Wformat -Wformat-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Wsuggest-override -Wno-delete-non-virtual-dtor -Wno-comment -Wimplicit-fallthrough=3 -Wno-strict-overflow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -fvisibility-inlines-hidden -g  -O0 -DDEBUG -D_DEBUG&#xA;--     C Compiler:                  /usr/bin/cc&#xA;--     C flags (Release):           -fsigned-char -W -Wall -Wreturn-type -Waddress -Wsequence-point -Wformat -Wformat-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Wno-comment -Wimplicit-fallthrough=3 -Wno-strict-overflow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -O3 -DNDEBUG  -DNDEBUG&#xA;--     C flags (Debug):             -fsigned-char -W -Wall -Wreturn-type -Waddress -Wsequence-point -Wformat -Wformat-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Wno-comment -Wimplicit-fallthrough=3 -Wno-strict-overflow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -g  -O0 -DDEBUG -D_DEBUG&#xA;--     Linker flags (Release):      -Wl,--gc-sections -Wl,--as-needed -Wl,--no-undefined  &#xA;--     Linker flags (Debug):        -Wl,--gc-sections -Wl,--as-needed -Wl,--no-undefined  &#xA;--     ccache:                      NO&#xA;--     Precompiled headers:         NO&#xA;--     Extra dependencies:          dl m pthread rt&#xA;--     3rdparty dependencies:&#xA;-- &#xA;--   OpenCV modules:&#xA;--     To be built:                 aruco barcode bgsegm bioinspired calib3d ccalib core datasets dnn dnn_objdetect dnn_superres dpm face features2d flann freetype fuzzy gapi hfs highgui img_hash imgcodecs imgproc intensity_transform line_descriptor mcc ml objdetect optflow phase_unwrapping photo plot quality rapid reg rgbd saliency shape stereo stitching structured_light superres surface_matching text tracking ts video videoio videostab wechat_qrcode xfeatures2d ximgproc xobjdetect xphoto&#xA;--     Disabled:                    world&#xA;--     Disabled by dependency:      -&#xA;--     Unavailable:                 alphamat cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev cvv hdf java julia matlab ovis python2 python3 sfm viz&#xA;--     Applications:                tests perf_tests apps&#xA;--     Documentation:               NO&#xA;--     Non-free algorithms:         NO&#xA;-- &#xA;--   GUI:                           GTK3&#xA;--     GTK&#x2B;:                        YES (ver 3.24.20)&#xA;--       GThread :                  YES (ver 2.64.6)&#xA;--       GtkGlExt:                  NO&#xA;--     VTK support:                 NO&#xA;-- &#xA;--   Media I/O: &#xA;--     ZLib:                        /usr/lib/aarch64-linux-gnu/libz.so (ver 1.2.11)&#xA;--     JPEG:                        /usr/lib/aarch64-linux-gnu/libjpeg.so (ver 80)&#xA;--     WEBP:                        build (ver encoder: 0x020f)&#xA;--     PNG:                         /usr/lib/aarch64-linux-gnu/libpng.so (ver 1.6.37)&#xA;--     TIFF:                        /usr/lib/aarch64-linux-gnu/libtiff.so (ver 42 / 4.1.0)&#xA;--     JPEG 2000:                   build (ver 2.4.0)&#xA;--     OpenEXR:                     build (ver 2.3.0)&#xA;--     HDR:                         YES&#xA;--     SUNRASTER:                   YES&#xA;--     PXM:                         YES&#xA;--     PFM:                         YES&#xA;-- &#xA;--   Video I/O:&#xA;--     DC1394:                      YES (2.2.5)&#xA;--     FFMPEG:                      YES&#xA;--       avcodec:                   YES (58.54.100)&#xA;--       avformat:                  YES (58.29.100)&#xA;--       avutil:                    YES (56.31.100)&#xA;--       swscale:                   YES (5.5.100)&#xA;--       avresample:                YES (4.0.0)&#xA;--     GStreamer:                   YES (1.16.2)&#xA;--     v4l/v4l2:                    YES (linux/videodev2.h)&#xA;-- &#xA;--   Parallel framework:            pthreads&#xA;-- &#xA;--   Trace:                         YES (with Intel ITT)&#xA;-- &#xA;--   Other third-party libraries:&#xA;--     Lapack:                      NO&#xA;--     Eigen:                       NO&#xA;--     Custom HAL:                  YES (carotene (ver 0.0.1))&#xA;--     Protobuf:                    build (3.19.1)&#xA;-- &#xA;--   OpenCL:                        YES (no extra features)&#xA;--     Include path:                /home/firefly/Downloads/opencv-4.6.0/3rdparty/include/opencl/1.2&#xA;--     Link libraries:              Dynamic load&#xA;-- &#xA;--   Python (for build):            /usr/bin/python2.7&#xA;-- &#xA;--   Java:                          &#xA;--     ant:                         NO&#xA;--     JNI:                         NO&#xA;--     Java wrappers:               NO&#xA;--     Java tests:                  NO&#xA;-- &#xA;============================================================================================&#xA;

    &#xA;

    ffmpeg info :

    &#xA;

    ============================================================================================&#xA;ffmpeg&#xA;ffmpeg version 4.2.4-1ubuntu1.0firefly5 Copyright (c) 2000-2020 the FFmpeg developers&#xA;  built with gcc 9 (Ubuntu 9.4.0-1ubuntu1~20.04.1)&#xA;  configuration: --prefix=/usr --extra-version=1ubuntu1.0firefly5 --toolchain=hardened --libdir=/usr/lib/aarch64-linux-gnu --incdir=/usr/include/aarch64-linux-gnu --arch=arm64 --enable-gpl --disable-stripping --enable-avresample --disable-filter=resample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libcodec2 --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libjack --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librsvg --enable-librubberband --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-lv2 --enable-omx --enable-openal --enable-opencl --enable-opengl --enable-sdl2 --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libx264 --enable-libdrm --enable-librga --enable-rkmpp --enable-version3 --disable-libopenh264 --disable-vaapi --disable-vdpau --disable-decoder=h264_v4l2m2m --disable-decoder=vp8_v4l2m2m --disable-decoder=mpeg2_v4l2m2m --disable-decoder=mpeg4_v4l2m2m --enable-shared --disable-doc&#xA;  libavutil      56. 31.100 / 56. 31.100&#xA;  libavcodec     58. 54.100 / 58. 54.100&#xA;  libavformat    58. 29.100 / 58. 29.100&#xA;  libavdevice    58.  8.100 / 58.  8.100&#xA;  libavfilter     7. 57.100 /  7. 57.100&#xA;  libavresample   4.  0.  0 /  4.  0.  0&#xA;  libswscale      5.  5.100 /  5.  5.100&#xA;  libswresample   3.  5.100 /  3.  5.100&#xA;  libpostproc    55.  5.100 / 55.  5.100&#xA;Hyper fast Audio and Video encoder&#xA;usage: ffmpeg [options] [[infile options] -i infile]... {[outfile options] outfile}...&#xA;====================================================================================&#xA;

    &#xA;